# CONTENTS

## 1 / INTRODUCTION

1.1 The Responsible Fishing Scheme 03  
1.2 RFS Compliance Support Guides 04

## 2 / PELAGIC SECTOR GUIDANCE

2.1 Fishing practices 05  
2.2 Fish handling 05  
2.3 Onboard processing 05  
2.4 Fish quality and grading 05  
2.5 Onboard handling and storage 06  
2.6 Temperature monitoring and control 08  
2.7 Guidelines for weighing and labelling at sea 09  
2.8 Vessel hygiene and cleaning schedules 09

## 3 / GLOSSARY

3.1 Glossary 13
1.1 The Responsible Fishing Scheme

The Seafish Responsible Fishing Scheme (RFS) is a voluntary vessel-based programme certifying high standards of crew welfare and responsible catching practices on board fishing vessels.

The RFS is open to all types of fishing vessels and fisheries, and is a ‘business-to-business’ tool that helps fishermen showcase best practice through independent, third-party auditing. To become certified, applicants must meet the requirements of the RFS Standard. A vessel and its skipper is the ‘unit’ audited against the Standard.

Certification to the scheme demonstrates that the skipper and vessel operate to best practice in five core areas:

**Core Principle 1: Safety, health and welfare**
- A commitment to generating a culture of integrity and respect (e.g. no forced labour) will be demonstrated.
- Best practice drawn from other relevant safety management and ethical and welfare initiatives to improve safety of the crew and promote decent working conditions.

**Core Principle 2: Training and professional development**
- Access to training for the key priority areas, especially safety.
- Focus on improving skills, knowledge and understanding.
- Commitment to raise standards, open up new opportunities and cooperate with management authorities.

**Core Principle 3: The vessel and its mission**
- The vessel and its gear are in compliance with all current legislation.
- The vessel operates within the legal framework with the right documentation in place.
- Full cooperation with Voluntary Agreements in existence in the fisheries within which they operate.

**Core Principle 4: Care of the catch**
- Focus on supplying safe, high quality, wholesome product with known provenance.
- Hygienic handling and storage at appropriate temperatures.
- Full traceability from catch to quayside.
- Responsible capture and landing of live products.
- Commitment to maintaining the value of the catch.

**Core Principle 5: Care for the environment**
- Responsible practice with respect for the environment (management of litter, lost fishing gear recovery, wildlife interaction records).
- Supporting fishery science (e.g. observers, science partnerships etc).
- Tie-in with other voluntary schemes.
1.2 RFS Compliance Support Guides

The RFS Compliance Support Guides (CSGs) underpin the RFS Standard and assist the skipper in understanding all areas that need to be complied with to successfully achieve RFS certification.

There are six CSGs in total - five sector-specific guides that the applicant will work through as appropriate to their own operations, and one cross sector guide that applies to all sectors. Applicants should read all the applicable CSGs before submitting their RFS application forms.

**Sector specific CSGs (applicants must read any which cover their type of fishing operations)**
- Demersal
- Shellfish
- Nephrops
- Pelagic
- Scallops

**General Cross Sector CSG (all applicants must read this guide)**
- Health and Safety
- Welfare
- Catch safety and traceability
- Onboard food preparation
- The environment

The legal requirements that apply to the operation of a fishing vessel cover basic issues of food safety, fish marketing, fishery controls and health and safety, most of which meet requirements set by the EU. **It is the responsibility of the skipper to ensure that the vessel is operating and catching within the appropriate legal framework.**

The CSGs provide information and support to assist applicants in meeting the conditions of the RFS Standard, and help them prepare for the RFS certification audit. These guides include support on general fishing operations as well as sector specific practices. The Guides direct RFS applicants to relevant documents and explain the conditions which underpin the Scheme, and help in the application and preparation process before a vessel undertakes its certification audit.
2 / PELAGIC SECTOR GUIDANCE

2.1 Fishing practices

The type of vessels used to capture pelagic species such as herring and mackerel range from large pelagic trawlers and purse seiners, through to smaller ring netters, and down to single crew hook and line operations. Consequently, the sizes of vessels and levels of equipment and mechanisation used will vary considerably.

Because of this variance there will be significant differences in handling practices, trip durations and preservation techniques. The following sections will cover these practices collectively, highlighting where appropriate significant differences in operating procedures.

2.2 Fish handling

The catch should be brought onto the vessel in the most appropriate manner to minimise the risk of physical damage to the fish. In the case of the large pelagic vessels a mechanical pumping system should be used that pumps the fish directly out of the net into refrigerated (RSW) or chilled (CSW) seawater storage tanks. For vessels deploying ring nets the catch should be brailed onto the vessel and placed directly into ice/slush storage tanks. For smaller boats the catch should be removed by hand from the nets or hooks and placed into suitable containers. The catch should be protected from the sun, weather elements and other sources of contamination.

For fully mechanised systems, all pumps, chutes, pipes, and other transfer elements should be designed to prevent physical damage to the fish caused by long drops, acute turns or by crushing. Pumping rates should be set to minimise bruising or crushing during transfer operations. Chutes should be angled so that the fish do not drop too quickly into the tank.

2.3 Onboard processing

With few exceptions pelagic species are not processed on board other than their transfer into containment for preservation. The main reason for this is that the pelagic species of fish by their very nature tend to be relatively small in size, and are captured in very large quantities especially on the larger vessels. Studies have shown that the benefit of operations such as gutting are far outweighed by the rapid chilling of the catch as it is brought on board.

The exception with respect to onboard processing relates to vessels that freeze their catch on board. This operation on board a vessel is classified as a secondary processing operation and any UK vessel will need to be assessed, accepted and authorised as an approved food establishment by the relevant authorities. These authorities will take into account facilities, practices and management systems and the vessel will be subject to periodic inspection to ensure approved food establishment status requirements remain satisfied. Further advice on approved establishment status can be obtained from Local Authorities throughout the UK.

2.4 Fish quality and grading

The following fish quality specifications are indicative of those recommended (at the point of landing) for herring, sardine, sprat and mackerel species. Dependent upon the capture method and trip duration there may be minor variances from the specification (particularly for tank stored trip captured fish) but not significantly so. As many tank stored catches are pumped ashore in closed systems it will not be possible for skippers and crew to assess quality parameters and therefore parameters and quality should be discussed with buyers of the catch to ensure that the required qualities are being achieved.
Required quality specifications at the point of landing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin condition</td>
<td>Firm and elastic (springs back quickly into shape when depressed lightly), bright, luster evident, clear mucus, no desiccation.</td>
</tr>
<tr>
<td>Eyes</td>
<td>Normal in appearance, bright and clear.</td>
</tr>
<tr>
<td>Gill mucus</td>
<td>No excess cloudy mucus.</td>
</tr>
<tr>
<td>Gill colour</td>
<td>Gills dark/bright red, very slight bleaching will be acceptable.</td>
</tr>
<tr>
<td>Gill odour</td>
<td>Sea fresh or odourless.</td>
</tr>
<tr>
<td>Blood</td>
<td>Blood red in colour.</td>
</tr>
<tr>
<td>Scales</td>
<td>In herring, the silvery scales should still be present.</td>
</tr>
<tr>
<td>Belly cavity (un-gutted fish only)</td>
<td>The belly cavity must be intact and free from damage.</td>
</tr>
</tbody>
</table>

2.5 Onboard handling and storage

It is essential that handling processes and procedures used on board be minimised to prevent the catch from being contaminated or physically damaged. Similarly, adequate temperature controls should be in place to ensure that the catch quality isn’t compromised. Systems used and control measures implemented should be documented and any adverse instances that do occur should also be recorded together with actions taken to resolve the problem. It is important to know what happened to the catch that may have been contaminated, compromised or damaged. This will allow the skipper and crew to demonstrate due diligence in their fishing operations and that everything that can and could have been done by the vessel and its crew was done.

Refrigerated sea water (RSW) and chilled seawater (CSW) tanks

The following points are recognised as reflecting best design and practice and therefore recommended for RSW and CSW tank container systems construction, operation and cleaning:

- Tanks used for storing fish need to be fit for the purpose of holding product hygienically and be capable of being maintained in a clean condition.
- Tanks must be kept clean and should be flushed with clean seawater or potable water with a suitable cleaning agent prior to the start of each fishing trip. Ensure any cleaning agent is thoroughly rinsed away after use.
- Shots caught more than 24 hours apart should not be mixed and should be stored separately.
- On vessels designed and equipped to preserve catch for more than 24 hours, records should be kept that can demonstrate that tanks are able to keep the core temperature of a representative sample of fish from each tank at not more than +3°C, six hours after loading and not more than 0°C after 16 hours.
- RSW and CSW tanks should be filled with clean seawater. Water should be taken on board at a safe distance from shore to prevent land-use run-off contamination. Harbour water should never be used for the storage medium in RSW/CSW tanks.
- It is recommended to pre-chill the tank to 0°C prior to the fish being introduced.
• RSW and CSW tanks should be adequately insulated to protect fish from heat gain.

• Good circulation should be achieved in the tanks to prevent warm spots. If warm spots occur in any tank, some fish will spoil more rapidly than others.

• It is not advisable to discharge the catch on landing if the core temperature of the fish is above +2°C.

**Slush ice container system**

The following points are recommended to optimise quality preservation within slush ice containment systems:

• Containers used for storing fish need to be fit for the purpose of holding product hygienically and be capable of being maintained in a clean condition.

• Containers used for storing fish should be insulated.

• Slush ice containers should be lidded to prevent potential contamination from bird faeces, foreign bodies, etc.

• Slush icing will also help to reduce the amount of pressure damage on the fish flesh as it is a liquid media so is ideal for pelagic fish species that tend to have soft textured flesh.

**Fish box containment systems**

The following practices are recognised and recommended as appropriate for box container systems to maintain the quality and preservation of the catch:

• Containers used for storing fish need to be fit for the purpose of holding product hygienically and be capable of being maintained in a clean condition. They should be constructed with an adequate number of drain holes large enough in size to allow the free drainage of melt water from the catch.

• To maximise the shelf life of the stored catch there should be a layer of ice placed in the bottom of the box before fish is added. Layers of fish, followed by ice, should be placed into the container to fill it. A final layer of ice should be placed on the top of the container.

• The ice must be made from clean seawater or potable fresh water and stowed in conditions that will prevent it from being potentially contaminated by other waste material such as fish waste or cleaning chemicals, etc.

• The top level of ice should not be proud of the upper rim of the container, as this may cause crushing damage to the stowed catch.

• The volume of ice should be sufficient to maintain the product at a temperature of between 0°C to +2°C. To maximise the quality of the fish the core temperature should be reduced to below +5°C within a time period of four hours from the point that the catch is first handled on board.

• The ice-to-fish ratio should approximately consist of one part ice to three parts fish.

• To assist further with the cooling effect it is advisable to place boxes partially filled with ice at the bottom of each stack of fish boxes, as this will raise the bottom box of fish off the floor, which will not only keep the fish free of melt water, it will also allow cooling air to circulate around the stack much more efficiently.

• Do not to pack the fish in too tightly as this can impede the flow of melt water around the fish. It is essential to allow this melt water to run over the fish to help cool the fish more rapidly.

• Any ice left at the end of a trip should be discarded and replaced with new. This will reduce the likelihood of contamination and flesh damage, as old ice is likely to be hard and lumpy.
Additional factors affecting the pelagic fish quality

Factors outside the control of the fisherman:
• Condition of the fish (season).
• Ambient and seawater temperature.

Factors within the control of the fisherman:
• Fishing method.
• Exposure to the elements.
• Time taken for catch to pass from fishing gear to stored condition.
• Method of preserving the catch.
• Length of the fishing trip.

2.6 Temperature monitoring and control

As with any protein based food and food ingredients, effective temperature monitoring and control are an essential part in ensuring that a safe, quality product is purchased by vessel customers or final consumers. For some pelagic species inherently high in histidine, this is especially important as periods outside appropriate temperature control can allow for the formation of histamine and the potential for scrombotoxic poisoning.

It is required to systematically monitor catch temperatures throughout all fishing trips of more than four hours duration to ensure that the catch is suitably chilled and maintained at appropriate temperatures. Where present, holds may have ‘hot’ and ‘cold’ locations within them, depending on their design. It is advisable to ensure that any temperature sensors or display devices are located in areas where the warmest temperatures are likely to be found. Sensors should not be located in close proximity to the entry hatch to the hold, as this will cause temperature fluctuation whenever fish is taken into the hold over the duration of the trip.

For vessels with RSW/CSW tanks and/or fish holds it is recommended that systems are fitted to relay the tank/hold temperature information to the wheelhouse as this will maximise the likelihood of being alerted to problems early.

Damped temperature sensors should be used. These types of sensors are designed to react less sensitively to fluctuations in temperature, rather than react to variations quickly as would be the case upon the addition of more catch to tanks or holds.

The development of documented temperature monitoring and control procedures (inclusive of temperature control recovery procedures and what happens to the catch during the period of unacceptable temperature control) should be built into vessel food safety management systems.

For vessels where deck storage is the only option it is essential that if trips are likely to be of four or more hours duration that sufficient ice is taken to chill the maximum amount of anticipated catch. Even if trips are expected to be of less than four hours duration it is recommended that ice is taken as smaller vessels tend to offer less shade and temperatures in summer can be significantly higher causing increased rates of quality loss.
2 / PELAGIC SECTOR GUIDANCE

Vessels with no dedicated holding facilities should hold their catch in insulated, lidded containers. These will assist in prolonging the ice taken to sea and will maintain appropriate catch temperatures if immersed in ice and lids are placed back on the containers. Where catch is not automatically deposited into containers, regular breaks in fishing must be taken to gather, wash and ice the fish to minimise the length of time catch is not stored in appropriately chilled conditions.

If the catch is frozen on board, then temperatures of fish should be monitored and recorded to ensure that the catch is maintained at or below -18°C for the entire duration of the fishing trip. Freezing is deemed as secondary processing therefore skippers and/or owners should comply with Local Authority requirements to get vessels registered as approved establishments. See previous sections.

2.7 Guidelines for weighing and labelling at sea

In the majority of pelagic boats this operation will not be a standard practice, as the catch is usually stored in either RSW, CSW or by container all of which contain a substantial amount of water and ice, however it is recommended that the skipper should have the ability to give the areas where the catch was taken and should be able to give a day as to when the fish was captured and in which tank/container it was stored.

Frozen at sea labelling practice

Fish frozen at sea should be in compliance with the required labelling legislation.

As an aid to compliance with traceability regulations the following information should be available with landed catch:

- Boat identification.
- Species of fish (both common and scientific name).
- Size grade (where applicable).
- Date of capture: this may include several days or a period of time corresponding to several dates of catches.
- Unit weight.
- Area of capture: for NE Atlantic the FAO sub area or division.
- Production method (e.g. frozen at sea, caught at sea).
- Method of capture.

2.8 Vessel hygiene and cleaning schedule

The use of a simple cleaning schedule can act as a straightforward tool to improve and maintain a high standard of hygiene on board any type of vessel. The use of a cleaning schedule is recognised as good practice as it provides a step-by-step instruction as to the systematic cleaning of the working areas to ensure that they are effectively maintained to help preserve the catch and to provide a safe working environment.

A good cleaning schedule should detail:

- What is to be cleaned.
- How often it should be cleaned.
Vessel cleaning guidelines

Crews must be made aware that good basic hygiene practices will ensure the overall quality of the catch is maximized and maintained. It is important to make crew members aware of this, as there will be no visible evidence at sea if fish has been excessively contaminated through poor hygiene standards. This set of guidelines explains why certain hygiene practices are important to the fisherman. If crew understand what can spoil the catch, then they will be in a better position to prevent this occurring in the first instance.

Working areas

An effective ‘clean-as-you-go’ policy throughout the trip, and once fishing has been completed, will be advisable as this will help to keep all areas including storage, processing and deck areas in a visibly clean condition.

Equipment

The variety of equipment held on board for the handling of the catch can on some boats be quite extensive. All equipment that comes into direct contact with the catch especially during the handling process stages should be given particular attention when cleaning as each piece of equipment is a potential source of contamination to the fish flesh, if it is not maintained in a clean condition.

RSW/CSW containers should be cleaned using a cleaning programme prior to the commencement of each trip to ensure that all fish and fish debris has been removed before fresh seawater and/or ice is added.

Cleaning chemicals

It is essential that the correct chemicals are used for the applications outlined above. There are differences between the function of each chemical that can be used to properly clean a fishing vessel.

Detergent

These are chemicals that are designed to remove organic matter e.g. fish oil, flesh and inorganic matter, e.g. engine oil, dirt, etc. from items of equipment or surfaces. They can be either alkaline or acidic based and will have specific functions on the types of matter they can remove. A common detergent is soap.

Disinfectant

These are chemicals that are designed to kill bacteria and some can kill viruses to create a biologically clean work surface, they cannot clean the surface of dirt and should be used after the surface has been cleaned with a detergent, if not the disinfectant properties will tend to be compromised. A common disinfectant is bleach.

Sanitiser

This is a range of chemicals that have both detergent and disinfectant properties and can be used effectively if the manufacturer’s instructions are complied with.
Boats are strongly advised to take professional advice when selecting chemicals, for a number of reasons:

- It can make a significant improvement to the boat’s hygiene standard, even if the effects of this are not visible.
- Some chemicals may react with certain metals such as aluminium, which may be present in equipment on board.
- The use of the wrong chemical such as an engine room degreasant does not provide any sanitising effect on work contact surfaces.
- The correct dilution rates and application methods should always be adhered to.
- Chemicals that have a strong residual taint such as bleach can if not rinsed off correctly inadvertently taint the flesh of the catch, which if occurring will have a detrimental impact on the value of the catch.
- Always ensure that the boat’s chemical supplier provides the relevant chemical data sheets for the products that are in use.

In addition, persons involved in the application of cleaning products must be fully instructed in their safe and correct application. Chemicals must be correctly stored away from working areas.

**Cleaning records**

As part of a well-managed cleaning schedule, boats should be encouraged to keep a record of the cleaning activity that takes place on board. This provides a record of the ‘due diligence’ the boat has undertaken to ensure that the fish landed is from a boat which is operating a regular cleaning programme. These cleaning records can then form part of the traceable quality history of the fish landed by the boat.

These cleaning records should also incorporate a check on the working and storage areas and equipment used by the boat to help ensure that once the cleaning programme has been undertaken, that it has been done to a satisfactory level.

**Methods of application and frequency**

The method by which areas and equipment of a boat should be cleaned will depend upon their use, and how heavily soiled they becomes during use.

- In many cases simple hosing down of work areas at regular intervals to prevent a build-up of fish and marine debris is sufficient.
- When it comes to a more thorough clean-down, a number of cleaning applications could be used, for example areas can either be manually scrubbed down with cleaning solutions, or boats may utilise the use of a power hose to apply high pressure cleaning with built-in chemical applicators.
- Some items of equipment can be soaked in sanitising dips to remove a heavy layer of soiling, but additional care is required to thoroughly rinse off these items with either clean seawater or potable fresh water.
- A thorough clean-down of the vessel at the end of a trip is strongly advisable as failure to clean effectively at this time will result in a high build-up of bacteria. Always ensure the persons involved in the application of these products during cleaning are instructed in their correct method of application.
- Always keep chemicals correctly stored away from working areas. Chemicals should never be placed in containers originally used for other chemicals, as this will compromise the safety instructions on the container which could have a potentially harmful effect on the catch and the crew member handling the product.
### An example of a cleaning schedule for use on a pelagic vessel*

<table>
<thead>
<tr>
<th>Area or item of equipment</th>
<th>Recommended frequency of clean</th>
<th>Method of application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net pounds</td>
<td>When nets are shot away from stowage area.</td>
<td>Hose down. Wash down, hose rinse.</td>
</tr>
<tr>
<td></td>
<td>One full clean per trip.</td>
<td></td>
</tr>
<tr>
<td>Fish working deck area</td>
<td>As necessary. Significant breaks in fishing.</td>
<td>Hose down. Chemical clean, hose down. Chemical clean, soak, rinse.</td>
</tr>
<tr>
<td></td>
<td>End of trip.</td>
<td></td>
</tr>
<tr>
<td>Fish handling equipment</td>
<td>Between hauls. Significant breaks in fishing.</td>
<td>Hose down. Chemical clean, hose down. Chemical clean, soak, rinse.</td>
</tr>
<tr>
<td></td>
<td>End of trip.</td>
<td></td>
</tr>
<tr>
<td>Fish conveyor/elevator</td>
<td>Between hauls. Significant breaks in fishing.</td>
<td>Hose down. Chemical clean, hose down. Chemical clean, soak, rinse.</td>
</tr>
<tr>
<td></td>
<td>End of trip. be acceptable.</td>
<td></td>
</tr>
<tr>
<td>RSW and CSW tanks</td>
<td>End of trip after unloading.</td>
<td>Chemical clean for all surfaces; soak, and rinse off. Ensure no residual taint – use fresh water or clean seawater not harbour water to rinse.</td>
</tr>
</tbody>
</table>

* Not all areas shown above will be present on all vessels.

- When commencing a trip; any exposed fish handling areas and containers especially on open decked boats, should be re-cleaned before the first fish are taken on board.
- Vessels fitted with pumping equipment should ensure that all pumps, pipework and ducting are thoroughly flushed to completely remove any residual fish after discharge of the catch to shore.
- Note that in reference to applications referring to a hose and/or rinse down, clean seawater or, if in harbour, only potable fresh water, should be used.
- It is never recommended to use harbour water for cleaning applications as this water will tend to be contaminated with chemical and other organic material.
| **Ambient** | The temperature of the surrounding environment. |
| **Bacteria** | A group of single-cell living organisms. Some may spoil food and some may actually cause illness. |
| **Clean seawater** | Natural, artificial or purified seawater or brackish water that does not contain micro-organisms, harmful substances or marine plankton in quantities capable of directly or indirectly affecting the health quality of food. |
| **Clean water** | Means clean seawater and fresh water of a similar quality. |
| **Cleaning** | The removal of food residues, dirt, grease and other undesirable debris. |
| **Cleaning schedule** | Written document setting out how a boat is to be kept clean. It will detail each area and piece of equipment to be cleaned; the cleaning product to be used; person/s with responsibility for carrying out cleaning; standard of cleanliness required; frequency; and Health and Safety precautions to be taken. All persons concerned must be aware of their individual responsibilities. A supervisor is responsible for checking the total cleaning process. |
| **Cold store or freezer** | Equipment for keeping food at frozen temperatures. Usually set around -18°C. |
| **Compliance** | Actions that satisfy the legal requirements. |
| **Contact surface** | Any surface which comes, or may come, into contact with fish, either directly or in such close proximity that it could contaminate the food if dirty. Includes work surfaces, containers and equipment. |
| **Contamination** | The introduction or occurrence in food of any microbial pathogens, chemicals, foreign material, spoilage agents, taints, unwanted or diseased matter, which may compromise its safety or wholesomeness. |
| **Core temperature** | The temperature at the centre of a mass or piece of food. |
| **Disinfection** | Reduction in levels of contamination on food equipment or in food premises, normally by the use of chemicals to kill micro-organisms. Disinfectants used must be suitable for use in food premises. |
| **Hygiene** | Measures to ensure the safety and wholesomeness of food. |
| **Infestation** | Entry and survival of pest animals and insects on board the boat or within equipment or products. |
| **Packaging** | Means the placing of one or more wrapped foodstuffs in a second container, and the latter container itself. |
| **Personal cleanliness** | Measures taken by food handlers to protect food from contamination. |
| **Pest** | Animal life unwelcome in food premises, especially insects, birds, rats, mice and other rodents capable of contaminating food directly or indirectly. |
| **Primary products** | Products of primary production including products of the soil, of stock farming, of hunting and fishing. (EU Definition as 852/2004). |
### Processed products
Foodstuffs resulting from the processing of unprocessed products. These products may contain ingredients that are necessary for their manufacture or to give them specific characteristics.

### Protective clothing
Clothing – hats, boots, waterproofs – worn by the crew when handling fish to prevent contamination of fish by the individual.

### Refrigerated hold
Area of the boat fitted with equipment to keep product cold. Normally between 0°C and 2°C.

### Spoilage
Fish deterioration resulting in off flavours, odours and possibly appearance indicating products are unsuitable for sale or to eat.

### Taint
Contamination of food with undesirable flavours or odours.

### Unprocessed products
Foodstuffs that have not undergone processing, and includes products that have been divided, parted, severed, sliced, boned, minced, skinned, ground, cut, cleaned, trimmed, husked, milled, chilled, frozen, deep frozen or thawed.
Did you find the information in this guide useful? Is there anything we could have done better?

We would love to hear your feedback so please contact Mick Bacon on michael.bacon@seafish.co.uk with your comments.