Discards survival probabilities of flatfish and rays in North Sea pulse-trawl fisheries

Wageningen Marine Research, The Netherlands

London, October 10th, 2018

Edward Schram & Pieke Molenaar

Research objectives

To measure discards survival for:

- Sole
- Plaice
- Turbot
- Brill
- Thornback ray
- To test measures aimed at increasing discards survival
- Flatfish pulse-trawling with 80mm meshes and 12m gears

Flatfish pulse-trawling

Pulse beam trawl

- Main target species: Sole (Solea Solea)
- Mixed demersal fishery
- 12m gear width
- 80mm mesh size
- Semi-automatic catch processing
- Monday-Friday

Experimental set-up

- Sampling of discards at sea
- Assessment of individual fish condition
- Housing of fish in survival units
- Survival monitoring at sea
- Transport to the lab
- Continued survival monitoring in the lab (15-18 days)
- Control fish to detect experiment induced mortality
- ICES guidelines for discards survival research

Sampling of discards at sea

- 3 commercial pulse-trawlers during regular fishing
- 9 trips, spread-out over 1 year
- End of sorting belt just before discarding

Sole (Solea Solea) – per trip

- Large variation among trips: 0-50%
- Varying fishing conditions throughout the year

Observation time (days)

Sole (Solea Solea) – all 9 trips combined

- Survival control-fish ~100%
- Monitoring period was sufficiently long stabilization
- => Experiment technically successful

Trip 1-2-3-4-5-6-7-8-9, species = Sole

Sole (Solea Solea) – all 9 trips combined

- ~90% sampled discards is alive upon sampling
- Most mortality occurs within 5 days
- Survival test-fish: 19% (95%CI 13-28%)

Trip 1-2-3-4-5-6-7-8-9, species = Sole

Sole – trips combined – split by fish condition classes

- Strong effect of fish condition on survival
- Small proportion of fish in best condition (A) in catches
- Improving fish condition = key to increase survival Trip 1-2-3-4-5-6-7-8-9, species = Sole

Survival other species

Species	Number	Overall discards survival probability		
		(%)		
	Obs.	Estimate	95% CI LL	95% CI UL
Plaice	558	14%	11%	18%
Sole	274	19%	13%	28%
Turbot*	111	30%	20%	43%
Brill*	90	13%	7%	23%
Thornback ray*	99	53%	40%	65%

What measures can be taken to increase survival?

- Investigated during (same) 9 trips
- Conventional versus modified practices
- Same methods different samples for modified practices
- Plaice as indicator species
- Three measures:
 - Water filled hopper
 - Shorter hauls
 - Knotless cod end

Water filled vs dry hopper

- Implemented on 1 side of the vessels
- Paired comparison within hauls
- Multiple hauls per trip
- Total of 8 trips

VS

Water filled vs dry hopper - Results All trips combined: no effect of a water filled hopper on plaice discards survival Trip 1-2-3-4-6-7-8-9, species = Plaice 2 0.8 0.6 Survival Control (n= 244) Conventional (n= 476) Water (n= 478) 4.0 0.2 0.0 5 10 15 0 Observation time (days)

Water filled vs dry hopper – Trip level

- 3 trips survival water filled > dry hopper
- Some trips indicating negative effect of water filled hopper?
- Effect of conditions yet to be established

Sea trip	Dry hopper	Water filled hopper	p-value
1	15%	18%	0.69
2	15%	29%	0.0009
3	12%	15%	0.77
4	3%	10%	0.03
6	22%	18%	0.74
7	20%	10%	0.17
8	17%	12%	0.26
9	20%	45%	0.01

Water filled hopper can increase discards survival under specific conditions.

Conclusions

- Discards survival was established for plaice and sole
- Indicative discards survival was established for turbot, brill and thornback ray
- Discards survival varies with:
 - Species
 - Trips & underlying factors
 - Fish condition
- Improving fish condition = key to increase survival
- A water filled hopper can increase discards survival under (yet to be established) specific conditions

More information

- Reports
- Factsheets
- Infographics
- Video
- All available at:

http://www.wur.eu/fishsurvival

http://www.wur.nl/overlevingvis

Fdward.schram@wur.nl

Pieke.molenaar@wur.nl

