

Seafish Marine Technology

Gary Dunlin R. Allan Reese April 2003

Financial Instrument for Fisheries Guidance (FIFG) Project An industry-centred conservation project

Commercial proving trials of a new prawn trawl design

Seafish Marine Technology

Gary Dunlin R. Allan Reese April 2003

Financial Instrument for Fisheries Guidance (FIFG) Project An industry-centred conservation project

Commercial proving trials of a new prawn trawl design

Summary

This report describes sea trials on a new design of *Nephrops* trawl. The design aims to minimise the bycatch of non-target species by precluding their entering the net, rather than releasing them post-capture.

The trials are the latest in a series and were carried out under commercial fishing conditions and supported by FIFG funds.

Using two vessels of similar size and power, the new trawl was tested against commercial trawls in the Farne Deeps fishery (NE England) over a fifteen day period through December 2002 and January 2003. Catches from each vessel were sampled in identical manners and the new trawl used by both vessels to negate any bias towards either vessel or Skipper.

The results show that the new design reduced the retention of haddock and whiting by 63% and 65% respectively, whilst *Nephrops* catches were equal to or greater than (by up to 20%) those taken by the other vessel.

Table of contents

Su	mmary	
1.	Introduction	1
2.	Aims and Objectives	3
3.	Materials and Methods	5
3.1 3.2	Net and Vessel details Commercial fishing trials	5 8
4.	Results	11
4.1 4.2 4.3	Sea Trials – NE Coast of England Discarded <i>Nephrops</i> and Benthos Statistical Analysis.	11 15 15
5.	Discussion	16
6.	Conclusions and recommendations	18
Ap	pendix I: Catch data from Farne Deeps trials (NE England)	19
Ар	pendix II: Analysis of selectivity data for new <i>Nephrops</i> trawl by R. Allan Reese (June 2003)	23

Figures

Figure 1a	Schematic diagram of the Stuart Nets initial design	6
Figure 1b	Schematic diagram of the Stuart Nets modified final version of the	
	new Nephrops trawl design	7
Figure 2	Length/numbers plot for haddock (North East Coast trials)	12
Figure 3	Length/numbers plot for whiting (North East Coast trials)	12
Figure 4	Length/Numbers plot for cod (North East Coast trials)	13
Figure 5	Comparison of <i>Nephrops</i> catches (North East Coast trials)	14

Tables

Table 1	Catch summary for NE Coast UK Trials	11
Table 2	Benthos catch summary taken from 5 hauls	15

1. Introduction

Targeted *Nephrops* (*Nephrops norvegicus*) fisheries frequently involve high catch rates of finfish. These are often unmarketable because of their size, quality or quota availability. Unmarketable fish should not be targeted but fishing mortality is often significant.

In 1997/98 Seafish started a programme of work to investigate ways of improving whitefish selectivity in trawls through the more effective use of technical conservation measures.

Interest focussed on UK *Nephrops* fisheries and a report entitled *A Review of Technical Conservation Measures in UK Nephrops Fisheries* (Seafish Report No. SR508) identified some technical options for further investigation.

The second stage of the programme examined the most promising of these options. The first to be investigated was the separator trawl. In 1998/99, gear engineering and commercial fishing trials were conducted using separator trawls on a range of vessels operating in the Irish Sea *Nephrops* fishery. This work is described in Seafish Report No. SR522, *Evaluation of* bycatch *reduction devices in UK Nephrops* fisheries – The use of separator trawls in the Irish Sea.

More recent work under this programme has concentrated on a different approach to bycatch reduction devices. Rather than reducing discarding by releasing the unwanted bycatch after it has been caught, this latest work places the emphasis on avoiding the capture of unwanted bycatch in the first place, thus precluding any question of the survival of escapees.

The aim of the project was to design a trawl that reduced the catch of certain fin fish species, whilst at the same time maintaining *Nephrops* catching performance. In other words, making the gear design more species-specific.

The gear is aimed at those *Nephrops* fisheries in which the bycatch of species such as haddock (*Melanogrammus aeglefinus*) and whiting (*Merlanius merlangus*) is seen as a nuisance factor and usually of little commercial value.

The task of introducing new net designs, especially ones originating from R&D as opposed to commercial gear manufacturers, is always a difficult one. For this reason, the gear design work was conducted in direct collaboration with established trawl designers/manufacturers. The credibility gained from this partnership was expected to increase the prospects of commercial uptake of any successful designs resulting from this work.

The initial development work relied heavily on trawl design work coupled with modelling and testing at the Authority's Flume Tank in Hull.

Some preliminary testing was conducted on the NE coast of England, the NW Highlands and the Clyde Estuary. Of the two designs initially developed, one is showing more promise than the other with respect to both bycatch avoidance and maintaining prawn-catching performance. At the end of those trials the results indicated that the new net design was operating at around 90% efficiency when comparing *Nephrops* catches with those from similar sized commercial nets. The new net design consistently showed significant reductions in the numbers of haddock and whiting caught.

Further commercial proving trials were needed in order to fine-tune the trawl's performance to enable it to compete commercially. Funding was sought and provided via the Financial Instrument for Fisheries Guidance (FIFG) in England. This report describes the development history of the trawl and the final set of commercial proving trials.

Acknowledgements:

Many individuals contributed to the success of these trials. Particular thanks go to:

the FIFG funding programme, Dr Andrew Revill of CEFAS, Walter Hay of Stuart Nets, the Skippers and crew of MFVs Oceana BF 840 and Osprey BF 500, the Sea Fisheries Inspectorate Skipper John Smith and Allan Reese, University of Hull for his statistical analysis of the results of this work.

2. Aims and Objectives

As with all the work within this programme, the overall aim is to reduce the level of discarding and resource wastage. A significant part of the discarded catch from the *Nephrops* fishery is made up of non-target species. Some of this bycatch is unavoidable. However, there are some species of finfish which, because of their behaviour, could be avoided.

The technical measures developed to date all rely on releasing the unwanted elements of the catch once they have entered the net. The objective of the underlying exercise was to determine ways of changing the design, construction and rigging of the *Nephrops* trawl so as to exclude the unwanted roundfish bycatch prior to it entering the net. This had to be achieved in a commercially acceptable manner without any detrimental effect on the *Nephrops* catching capability of the gear.

To achieve this overall aim two objectives were set as criteria for judging the outcome:

- To compare the catching performance of the new designs with that of an unmodified net of comparable dimensions for both target (*Nephrops*) and bycatch species under commercial fishing conditions.
- To complete the overall development process and demonstrate that the new net design developed over the preceding two years could operate successfully under commercial conditions. A successful outcome would show the trawl catching viable quantities of *Nephrops* with minimal round fish bycatches.

If successful, the positive benefits could then be used to encourage commercial acceptance and uptake of the new designs in other *Nephrops* fisheries.

A successful outcome could also lead to the development of technical guidelines on the modifications required to alter existing prawn trawl designs to achieve the desired level of bycatch avoidance. Commercial proving trials of a new prawn trawl design

3. Materials and Methods

3.1 Net and Vessel details

This net underwent modifications prior to evaluation in the Clyde Estuary fishery (see figure 1) and achieved bycatch reductions in the region of 70% for both haddock and whiting at the expense of an approximate 4% reduction in prawn catch. The same net, originally tested in the NE coast of England fishery, performed poorly with respect to the prawn catch (32% of the commercial catch). The improvements made prior to the Clyde exercise needed to be verified in the NE coast fishery for which this design was originally intended. This could be achieved by following the same catch comparison procedures using two vessels operating in partnership, (ideally the same two vessels that conducted the initial trials).

Fishing trials commenced in December 2002, operating from the port of Blyth in Northumberland using the vessels *Oceana* (BF 840) and *Osprey III* (BF 500).

These vessels are of similar size and power, (9.95m, 199kw and 9.9m, 194kw respectively), general design and layout and regularly operate together in various prawn fisheries around the UK. Both vessels were using the same size and style of prawn trawls and associated rigging arrangements. The nets were spread by Dunbar style 'V' doors (~1.8m) and 73m (40 fathom) of combination wire sweeps attached to 18m (10 fathom) of rubbered wire 'legs'. These sweeps were attached directly to the nets by a spreader bar.

Figure 1a: Schematic diagram of the Stuart Nets initial design.

Commercial proving trials of a new prawn trawl design

7

The main design changes compared to a standard trawl design were:

- A reduced headline height
- Removal of cover (square panel)
- Increasing mesh size in the upper panels of the net, particularly the forepart.

The net plans (see figure 1a and 1b) show the main areas of alteration after previous trials.

3.2 Commercial fishing trials

The fishing trials were conducted as catch comparison exercises using a two-vessel arrangement.

Two similar vessels, using similar sized prawn trawls were selected to operate in partnership for the duration of the trials (~15 days of fishing).

The initial arrangement was for one vessel (chartered), to work with the experimental net and the other vessel to use their own standard prawn trawl for comparison. During these periods the vessel operating the experimental trawl was instructed to 'shadow' the partner vessel to try and sample similar populations of target and bycatch species.

The limitations of this type of comparative exercise were accepted on the understanding that the results were only expected to provide an indication of the relative performance of the experimental gear.

Each of the trials vessels carried a Seafish representative to record catch data and monitor the performance of the gear. Catch sampling entailed haul by haul quantification of the target species (*Nephrops*) and round fish bycatch species of haddock and whiting. Additionally, samples of the bycatch were measured to provide length/frequency data.

The fishing trials were split with each vessel operating either with the experimental net as the 'shadow' vessel or with a standard prawn trawl as the 'lead' vessel. This was intended to alleviate potential vessel/Skipper bias and test it against two different commercial *Nephrops* trawls. All operations took place on commercial fishing grounds.

Both vessels were of similar design and deck layout, which enabled the same catch sampling procedures to be followed on each vessel.

When the vessels hauled, the catch was emptied into the hoppers. All discarded fish and assorted debris were quantified and recorded. This was done by filling the waste chute running outboard with baskets (and part baskets) of discarded material

and recording how much was required. This waste chute was filled with varying discard content a number of times to obtain an average amount needed to fill it. The chute was then filled and emptied during the catch sorting process and the number of times that this took place was recorded. This figure was multiplied by the number of baskets required to fill the chute.

Sample baskets were taken away for measurement at a number of stages throughout the catch sorting operation. One was taken from the start, one near the middle and one towards the end to enable a good profile of discarded fish to be obtained.

The marketable fish (bycatch) being kept in the fishroom was sampled by measuring either all of the cod, haddock and whiting, or a representative amount of each species if large quantities were being caught. The live weight of *Nephrops* sorted for retention was also recorded after the catch was sorted.

During the last week of the trials discarded *Nephrops* were retained to enable a count per kilogram to be carried out. This enabled a check to be made on the catch sorting procedures to ensure that both crews were retaining the same sizes of *Nephrops*.

To ensure that both nets were making similar ground contact data were taken at the end of the trials to provide a full analysis of benthic species by both trawls.

Seafish personnel on both vessels used the same methods of sampling for consistency. Observations on general gear performance were also recorded.

A full analysis of the data was carried out by a Statistician (R. Allan Reese) from Hull University and is fully reported on in Appendix II.

Commercial proving trials of a new prawn trawl design

4. Results

4.1 Sea Trials – NE Coast of England

The indicators for evaluating the performance of the new trawl designs for the commercial sea trials were as follows:

- The quantity of principal bycatch species haddock and whiting retained in the experimental trawl as compared to the standard trawl.
- The quantity of prawns (Nephrops norvegicus) caught

The catch details for these trials are shown in Appendix I and summarised in Table1.

Table 1: Catch summary for NE Coast UK Trials

	Total No	of fish caught	Percentage
Snacias	Standard	Experimental	reduction in catch
Opecies	Trawl	trawl	observed in
			experimental trawl
Haddock	3,500	1,339	63%
Whiting	37,739	13,240	65%
Cod	1,789	1,597	11%
Nephrops	950 Kg	1,213 Kg	+20%

As well as quantifying the catches of haddock, whiting and cod (*Gadus morhua*) the data are presented as length/numbers plots showing the size range of fish encountered during the trials. These are shown in Figures 2, 3 and 4 for haddock, whiting and cod respectively.

HADDOCK CATCH COMPARISON WITH EXPERIMENTAL NEPHROPS TRAWL DESIGN NORTH EAST COAST TRIALS

Figure 2: Length/numbers plot for haddock (North East Coast trials)

WHITING CATCH COMPARISON WITH EXPERIMENTAL NEPHROPS TRAWL DESIGN NORTH EAST COAST TRIALS

Figure 3: Length/numbers plot for whiting (North East Coast trials)

Figure 4: Length/Numbers plot for cod (North East Coast trials)

The quantity of bycatch species retained

The experimental *Nephrops* trawl demonstrated bycatch reduction in respect of the two principal bycatch species encountered (i.e. whiting and haddock). The experimental trawl was observed to significantly reduce the retention of both of these species across all observed length classes (i.e. 20-50 cm).

The experimental trawl reduced the retention of whiting in the cod end by 65%, whilst the retention of haddock in the experimental trawl cod end was reduced by 63%. This net also appeared to reduce the retention of cod by 11% mainly in the smaller size classes (15 to 30cms). These figures were based on the combined totals from the summed hauls from these sea trials.

Figure 5: Comparison of Nephrops catches (North East Coast trials)

The quantity of target species (Nephrops norvegicus) caught

There were no observed losses of the target species (*Nephrops norvegicus*) (see figure 5) rather an increase was observed of 20%. The experimental trawl therefore increased catches of the target species when directly compared to that of the standard trawls.

4.2 Discarded *Nephrops* and Benthos

Counts carried out on discarded *Nephrops* showed that the commercial trawls averaged 74 *Nephrops* per kilogram, whilst the new trawl design averaged discarded *Nephrops* counts of 78.

Species	Commercial trawl	New trawl design
Plaice	192	147
Lemon sole	99	117
Dover sole	18	7
Witch	36	18
Dab	75	66
Long rough dab	122	276
Turbot	3	2
Brill	0	4
Monk	6	4
Ray	75	65
Cuckoo ray	71	118
Invertebrates	896	1234

 Table 2: Benthos catch summary taken from 5 hauls

Five hauls were sampled for a full benthic survey of the catch. The differences between trawls were not significant.

4.3 Statistical Analysis

SPSS output is appended and all output tables can be seen in Appendix II. The summary for the three species is:

- Whiting show significantly fewer caught by the experimental net, with a monotonic trend of decreased selectivity with increased size. There were no significant changes in catch throughout the trial.
- Haddock show significantly fewer caught in the experimental net, with no trend across the sizes but a (probably spurious) absence of difference for the size group 15-19cm. There was a significant difference in catches between the first and second half of the trial but this was not better explained by a linear trend.
- Cod show no significant difference in catches between the two nets, but a significant difference between the first and second half of the trial.

5. Discussion

The most common approach to solving the problem of bycatch reduction is the removal of the unwanted bycatch after it has been caught in the net. The concept investigated in this work was the avoidance of the bycatch before entering the gear, whilst maintaining commercial *Nephrops* catches.

This approach involved some radical changes to the overall design of the gear with the removal of the cover and introduction of large meshes being the most controversial part of the design. Previous attempts to make *Nephrops* trawls more selective in reducing bycatch were always resisted as fishermen associated this with a drop in commercial catches.

The initial intention of the original project was to test the trawl in three different *Nephrops* fisheries in England and Scotland to try and gain commercial acceptance in as many geographical areas as possible. However, it was not until the last set of trials in the Clyde area, after final adjustments had been made to the net, that commercial catches of *Nephrops* were taken in line with the lead vessel.

The results from the final trials in the Clyde showed bycatch reductions of 71% and 72% for haddock and whiting respectively whilst maintaining the prawn catches to within 4.5% of the standard net. This was a significant improvement on previous commercial trials which showed a loss of up to 45% of commercial *Nephrops* catches (the bycatch reduction figures in previous trials remained high) and it was thought that the trawl needed to repeat this success in a previously disappointing fishery.

It is generally accepted that comparative fishing experiments should be carried out on board twin rig vessels but the design and drag reduction properties of this trawl would make balancing two trawls in such a rig very difficult. The use of a "shadow" vessel in these trials for comparison can only give indicative performance results and not systematic selectivity figures.

The results from these trials demonstrate that a trawl of this type will significantly reduce the amount of whiting and haddock entering the net (65% and 63% respectively). This reduction of bycatch in these species did not extend to the *Nephrops* catches that were in fact consistently higher than the commercial trawls used (the increase in *Nephrops* catches were 20%). On a haul by haul basis *Nephrops* catches were always greater in the new design trawl.

The trials were carried out over a period of three weeks during the Farne Deeps *Nephrops* season and incorporated both spring and neap tides. During spring tides when *Nephrops* catches are naturally low, the new trawl maintained its increase in *Nephrops* quantities although on a much smaller percentage (typically 5 to 10%). Interestingly, the amount of bycatch difference (particularly whiting) between the

trawls reduced from ~60% to ~40% during the spring tides and it is thought that the exceptionally strong springs encountered affected their escape behaviour.

When the tides changed into the neap cycle and *Nephrops* catches increased, counts were carried out on the discarded *Nephrops* on both vessels. The counts showed that the new trawl did in fact catch more bulk overall in *Nephrops* (a count of 78 per kilo for the new trawl and 74 per kilo for the commercial trawl), but it is not known why.

Another general concern from fishermen about technical conservation measures is associated losses of bottom dwelling fish species such as Lemon Soles (*Microstomus kitt*) and Plaice (*Pleuronectes platessa*). Looking in table 2 where the benthos samples are summarised, it is obvious that no such losses are associated with this trawl.

Less quantitative aspects of this new trawl are the reduction in catch sorting times for crews and a corresponding improvement in catch quality. These qualitative benefits have been demonstrated with other technical conservation measures such as the separator trawl, but, unlike those technologies this trawl does not have the increased gear handling problems associated with it.

The single most significant success in these trials was the request by the skipper of one of the vessels to carry on using the trawl commercially over an extended period of time. He became convinced that the new design would consistently maintain – or improve – catch rates of *Nephrops*, whilst avoiding bulk catches of unmarketable whiting and haddock. Following the conclusion of the trials the skipper has purchased the net with the intention of using it in preference to his 'normal' *Nephrops* trawl.

6. Conclusions and recommendations

Conclusions

Successful trials were undertaken to compare the catching performance of a novel design of *Nephrops* trawl with that of comparable standard designs. The indicators used were the catches of *Nephrops*, haddock, whiting, cod and various benthic species. The trials were carried out under commercial conditions to assess the likely commercial acceptability of the new design.

The new trawl consistently outperformed the conventional designs in its catch rate of *Nephrops* – typically by around 20% by weight. It also consistently reduced the retention of round fish : for haddock and whiting by about 63% and 65% respectively.

It is considered that the design process for this type of net is largely complete and it should be used more widely so that fishermen develop confidence in its application under a range of different conditions.

Recommendations

As a result of this, and previous, trials it is recommended that:

- discussions should be opened with both the Fisheries Departments and fishermen's associations to consider whether and how the benefits of this net design could be incorporated into conservation-related legislation,
- further funding should be sought to extend the evaluation of this net design to a wider range of fishing circumstances, and
- promotional activities and further commercial trials should be used to build industry confidence in this new trawl design.

Appendix I: Catch data from Farne Deeps trials (NE England)

EXPERIMENTAL NEPHROPS TRAWL DESIGN NORTH EAST COAST TRIALS

NEW NEPH	IROPS TRAW	/L	NORMAL T	RAWL	
SAMPLE TO	OTAL:	537	SAMPLE T	OTAL:	635
RAISED TO)TAL:	1597	RAISED TO	DTAL:	1789
MLS (cm)		35	MLS (cm)		35
%under ML	S	49	%under ML	S	58
% RETAINE	ED	51	% RETAIN	ED	42
	COD			COD	
CLASS	RAISED	FREQ.	CLASS	RAISED	FREQ.
cm	NUMBERS	%	cm	NUMBERS	%
10	0	0.000	10	0	0.000
11	0	0.000	11	0	0.000
12	0	0.000	12	0	0.000
13	0	0.000	13	0	0.000
14	0	0.000	14	0	0.000
15	0	0.000	15	0	0.000
16	0	0.000	16	12	0.006
17	0	0.000	17	10	0.006
18	0	0.000	18	0	0.000
19	0	0.000	19	0	0.000
20	0	0.000	20	0	0.000
21	0	0.000	21	10	0.006
22	0	0.000	22	0	0.000
23	13	0.008	23	0	0.000
24	0	0.000	24	6	0.003
25	0	0.000	25	0	0.000
26	0	0.000	26	0	0.000
27	6	0.004	27	12	0.006
28	54	0.034	28	67	0.037
29	90	0.056	29	43	0.024
30	70	0.044	30	97	0.054
31	65	0.040	31	166	0.093
32	147	0.092	32	209	0.117
33	150	0.094	33	209	0.117
34	195	0.122	34	194	0.108
35	115	0.072	35	139	0.077
36	133	0.083	36	107	0.060
37	127	0.079	37	109	0.061
38	104	0.065	38	70	0.039
39	75	0.047	39	86	0.048
40	62	0.039	40	72	0.040
41	63	0.039	41	45	0.025
42	38	0.024	42	32	0.018
43	29	0.018	43	23	0.013
44	22	0.014	44	20	0.011
45	6	0.004	45	9	0.005
46	15	0.009	46	5	0.003
47	3	0.002	47	4	0.002
48	1	0.001	48	7	0.004
49	1	0.001	49	4	0.002
50	6	0.003	50	3	0.002

EXPERIMENTAL NEPHROPS TRAWL DESIGN NORTH EAST COAST TRIALS

NEW NEPH	IROPS TRAWL		STANDAR	D TRAWL	
SAMPLE T	OTAL:	781	SAMPLE T	OTAL:	1082
RAISED TO	DTAL:	1339	RAISED TO	DTAL:	3500
MLS (cm)		30	MLS (cm)		30
%under ML	S	19	%under ML	S	29
% RETAINE	ED	81	% RETAIN	ED	71
	HADDOCK			HADDOCK	
CLASS	RAISED	FREQ.	CLASS	RAISED	FREQ.
cm	NUMBERS	%	cm	NUMBERS	%
10	0	0.000	10	0	0.000
11	0	0.000	11	0	0.000
12	0	0.000	12	0	0.000
13	0	0.000	13	10	0.003
14	0	0.000	14	58	0.016
15	17	0.013	15	101	0.029
16	9	0.006	16	153	0.044
17	8	0.006	17	57	0.016
18	35	0.026	18	50	0.014
19	11	0.008	19	39	0.011
20	13	0.010	20	35	0.010
21	8	0.006	21	0	0.000
22	0	0.000	22	5	0.001
23	9	0.006	23	0	0.000
24	12	0.009	24	16	0.005
25	18	0.013	25	34	0.010
26	0	0.000	26	17	0.005
27	36	0.027	27	49	0.014
28	38	0.028	28	135	0.038
29	48	0.036	29	260	0.074
30	31	0.023	30	351	0.100
31	81	0.060	31	328	0.094
32	130	0.097	32	283	0.081
33	193	0.144	33	355	0.101
34	208	0.155	34	306	0.087
35	126	0.094	35	248	0.071
36	124	0.093	36	199	0.057
37	68	0.051	37	133	0.038
38	37	0.028	38	119	0.034
39	30	0.022	39	54	0.015
40	25	0.019	40	60	0.017
41	14	0.010	41	25	0.007
42	6	0.004	42	15	0.004
43	5	0.004	43	6	0.002
44	2	0.001	44	1	0.000
45	0	0.000	45	0	0.000
46	0	0.000	46	0	0.000
47	0	0.000	47	2	0.001
48	0	0.000	48	0	0.000
49	0	0.000	49	0	0.000
50	0	0.000	50	0	0.000

EXPERIMENTAL NEPHROPS TRAWL DESIGN NORTH EAST COAST TRIALS

NEW NEP	HROPS TRA	WL	STANDAR	RD TRAWL	
SAMPLE	TOTAL:	2288	SAMPLE	TOTAL:	4521
RAISED T	OTAL:	13240	RAISED T	OTAL:	37739
MLS (cm):		27	MLS (cm)		27
%under M	LS	75	%under M	LS	77
% RETAIN	NED:	25	% RETAIN	NED:	23
	WHITING			WHITING	
CLASS	RAISED	FREQ.	CLASS	RAISED	FREQ.
(cm)	NUMBERS	(%)	(cm)	NUMBERS	(%)
(0)		(/-)	(0)		(/)
10	0	0.000	10	0	0.000
11	0	0.000	11	0	0.000
12	0	0.000	12	0	0.000
13	0	0.000	13	0	0.000
14	0	0.000	14	12	0.000
15	0	0.000	15	6	0.000
16	0	0.000	16	0	0.000
17	13	0.001	17	18	0.000
18	4	0.000	18	19	0.000
19	5	0.000	19	52	0.000
20	61	0.005	20	623	0.007
20	492	0.000	21	1845	0.049
22	1251	0.007	22	4582	0.040
23	2065	0.004	23	6471	0.121
20	2315	0.100	20	6099	0.171
25	2130	0.173	25	5683	0.162
25	1584	0.101	20	3701	0.101
20	1270	0.120	20	3155	0.100
28	020	0.097	21	2168	0.004
20	920 468	0.009	20	1500	0.037
29	400	0.000	29	747	0.042
30	117	0.020	31	/4/	0.020
31	68	0.009	32	419	0.011
32	50 52	0.003	32	230	0.000
33	10	0.004	34	62	0.002
34	19	0.001	35	02 30	0.002
35	5	0.001	36	10	0.001
27	5	0.000	30	19	0.001
20	3	0.000	20	9	0.000
20	4	0.000	20	4	0.000
39	2	0.000	39	4	0.000
40	0	0.000	40	0	0.000
41	0	0.000	41	0	0.000
42	0	0.000	42	0	0.000
43	0	0.000	43	0	0.000
44	0	0.000	44	0	0.000
45	U	0.000	45	U	0.000
40	U	0.000	40	U	0.000
4/	U	0.000	47	U	0.000
48	U	0.000	48	U	0.000
49	U	0.000	49	U	0.000
50	U	0.000	50	U	0.000

Appendix II: Analysis of selectivity data for new *Nephrops* trawl by R. Allan Reese (June 2003)

Analysis of selectivity data for new *Nephrops* trawl by R. Allan Reese (June 2003)

General considerations

Fishing-gear selectivity is difficult to measure because the variation due to external factors (eg, weather, seabed, size of stocks, shoaling behaviour, features or practices on the vessel, other vessels' prior activities in the area, etc) may be far greater than the difference between two types of gear. A common assumption is that the selectivity of a net for a particular species may be related to the size of fish by a smooth monotonically-increasing curve, at least over a size range of interest. However, the absolute selectivity of an individual net is generally unknown and unknowable (population at risk being vaguely defined), and what is measured by sampling is the relative selectivity of two or more gears. The relative selectivity is therefore the ratio of the two selectivity curves at each length. Again, it is an assumption that the relative selectivity will approximate to a smooth curve. The objective of most gear studies is to allow small fish to escape while retaining larger fish, so the logistic (or growth) curve is a model for relative selectivity with highly desirable qualities: the boundary values (asymptotes) at the lower and upper sizes are zero and one, and the slope parameter relates to the size range where the selectivity changes most rapidly. The performance of a net may be summarized using the single statistic, LD50, that size at which the catch in one net is half that in the other.

It is, however, unwise initially to put too much reliance on a mathematical model when analysing new data. While the comparison method described in Fryer, Zuur & Graham (2003) may be appropriate for summarizing and presenting the results of analyses, each trial should initially be examined using exploratory (forensic) techniques that can identify patterns and exceptions without relying upon prior assumptions. Diagnostic tests following model fitting may pick up violations of assumptions, but this argument may become circular: features of diagnostic plots may be considered noteworthy only because the investigator suspects a problem.

Fryer et al (op cit) points out that "most analyses of such data have compared catches that have been aggregated over all lengths or over a wide range of length classes." In particular, comparing catches below and above the minimum landing size (MLS) between gears addresses the pragmatic question of whether one gear is legally and commercially more efficient, but it suppresses the technical detail of how and where the selectivity applies. Fitting a logistic curve is particularly appropriate when the test gear is constrained to be not more effective than its comparator, for example in a covered cod-end trial, but is less relevant for a paired trial where either gear may randomly catch better.

The potentially large variation in catches between hauls (John 21, 3-6) raises two problems. One is that small counts should potentially be treated as binomial or Poisson variates because the distributions are inherently skewed. The second is that small catches are counted in full, while more productive hauls are sampled and haul estimates arrived at using a raising factor (inverse weight). The second problem creates issues of heteroscedasticity (variance that changes with the value being measured), because the variance of small counts is multiplied, and sensitivity, because small differences at one range of values have less effect than at another.

An alternative that does not seem to have been reported is to treat each haul as a multivariate observation and, because the length classes are ordered, to use a repeated measures analysis to examine the structure. Length is used here as equivalent to time in the classic repeated measures set-up. Fryer et al cites Millar (1993) as modelling a scallop dredge using step-function curves, but such curves still increase monotonically with fish size. Another approach would be to use Generalized Estimating Equations (GEE), which gives a choice between error functions, but the numbers caught in the present trials (especially when grouped) are large enough that the use of normal errors seems reasonable. An exploratory analysis should allow the possibility for any size category to behave differently. The analysis proposed here is flexible in this way. The software used is SPSS (version 11.5.1 2002).

Repeated measures data are usually analysed by converting the raw observations into orthogonal contrasts, but I agree with a caution in Hand & Taylor (Multivariate Analysis of Variance and Repeated Measures, 1987) that over-emphasis on orthogonal contrasts "constrains the researcher to pose questions that fit the mould of his research tools ... [whereas if] a researcher has clear and well-defined research questions, then statistical methodology should provide tools to answer those questions and not instead answer related, but different, questions." There are many ways to set up orthogonal functions: The polynomial set of contrasts looks for specific shapes of response across the factor levels, but are difficult to interpret above a quadratic term; whereas Helmert contrasts appear to match the expectation of generally-increasing retention of larger fish while allowing for fluctuations: "each level of the factor except the last is compared to the mean of subsequent levels. In a balanced design, Helmert contrasts are orthogonal." (SPSS Advanced Models, GLM procedure). SPSS was used because Genstat (version 5 under Windows) has a procedure based on polynomial contrasts only.

MANOVA may be criticized if it assumes the data were generated under a multivariate normal distribution. The SPSS implementation addresses this by computing three estimates: one based upon the multivariate normal assumption, one (Huynh-Feldt) making an adjustment for deviations from the assumption, and a most conservative lower-bound. When these results differ markedly, it becomes a matter of judgment which to choose. Having a large number of length categories and hence

contrasts may also be seen as a problem, except that one is looking for any pattern across the significance levels rather than considering each in isolation.

The current data

Data were provided for 17 hauls from a pair of trawlers that steamed in tandem. The experimental and control nets were swapped over after 8 hauls, so the hauls fell into two time periods in a crossover design. Numbers of fish caught per haul declined during the trial for Cod and Haddock but were relatively stable for Whiting. The crossover design confounds the effect of time period with the interaction between gear and vessel. Confounding means that arithmetically the effect may be attributed to either factor, but the trend makes it appropriate to interpret any effect as the former. On this reading, the two vessels were equivalent.

The method was to apply a two-way MANOVA model (factors: vessel and trawl) to the multivariate observation of number of fish of each (cm) length category. Since the numbers in some categories were small, they were then totalled in 5cm groupings to shorten the output and emphasize the pattern. A variation of the method would be to centre the groupings on the MLS for each species.

A specific reason not to apply the logistic model to these data is that the immediate impression is that the experimental net was selective across the whole size range for the whitefish species. Applying a curve when the data suggest only a constant term might give rise to over-fitting.

SPSS provides as output the test of sphericity and standard anova tests for each factor under the range of sphericity assumptions. The effects are measured for the between-subjects effects – comparing the two nets and time periods – and within-subject effects – how these factors apply across the length groups. The main effect of length is significant but not important, in that it is highly unlikely that the numbers of fish caught in each length group will be the same. Within-subject contrasts are examined with the expectation that they should show a pattern across the lengths, rather than looking for significant effects of individual contrasts.

Results

SPSS output is appended. The summary for the three species is:

- Whiting show significantly fewer caught by the experimental net, with a monotonic trend of decreased selectivity with increased size. There were no significant changes in catch throughout the trial.
- Haddock show significantly fewer caught in the experimental net, with no trend across the sizes but a (probably spurious) absence of difference for the size group 15-19cm. There was a significant difference in catches between the first and second half of the trial but this was not better explained by a linear trend.

• Cod show no significant difference in catches between the two nets, but a significant difference between the first and second half of the trial.

Whiting ranged from 14cm to 39cm, so were analysed as 26 length groups or collapsed into 6 groups (10 to 14cm, 15 to 19cm, etc). The sphericity (multivariate normality) test was very significant, and the adjusted and lower bound tests will be more reliable. On any basis, there was no effect of vessel or period, but a very significant difference between the normal and experimental trawl. The estimated means show the normal net caught better in the first period and the experimental net better in the second period; in both periods the normal net caught over twice as many as the experimental. The within-subject contrasts show as very significant (except for an anomaly at 21cm) until 36cm, above which the difference becomes increasingly non-selective. When reduced to six length groups, the effect is highly significant for all groups but with F values reducing as length increases. The interpretation is that selectivity is stronger for the smaller lengths.

Haddock ranged from 12cm to 46cm but with only single observations at the extremes. For the range 15-45cm, sphericity was rejected. The smaller amount of data makes the patterns of significance over length more variable, but the effects of trawl and trawl*vessel (ie period) are very significant over all lengths. When lengths were grouped, the differences between the nets were very significant for all lengths except the second (15-19cm). This is quite likely an anomalous result, a type 2 error.

Cod ranged from 16cm to 50cm, and again sphericity was rejected. No significant effects were observed for trawl, but there was a very significant effect of period. When reduced to seven length groups, no pattern is seen across lengths. The estimated marginal means for the two nets and periods are strikingly similar.

Output Tables.

SPSS output for Cod

GET

<code>FILE='C:\Documents and Settings\administrator\My Documents\cod1.sav'. freq var=l10 to 150 / format=notable / stats=min max.</code>

Frequencies

Statistics

		L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L22	L23	L24	L25	L26	L27	L28	L29	L30	L31	L32	L33	L \$ 4	L3
Ν	Vali	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34
	Mis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
Mi	nimur	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0	
Ma	aximu	.0	.0	.0	.0	.0	.0	1.5	0.0	.0	.0	.0	0.0	.0	3.0	6.0	.0	.0	1.5	2.0	3.0	24.0	2.0	64.0	2.0	5 0	35.0

GLM

```
112 to 150 BY vessel trawl
/WSFACTOR = length 39 helmert
/METHOD = SSTYPE(3)
/CRITERIA = ALPHA(.05)
/WSDESIGN = length
/DESIGN = vessel trawl vessel*trawl .
```

General Linear Model

Within-Subjects Factors

Measure: N	/IEASURE_1
	Dependent
LENGTH	Variable
1	L12
2	L13
3	L14
4	L15
5	L16
6	L17
7	L18
8	L19
9	L20
10	L21
11	L22
12	L23
13	L24
14	L25
15	L26
16	L27
17	L28
18	L29
19	L30
20	L31
21	L32
22	L33
23	L34
24	L35
25	L36
26	L37
27	L38
28	L39
29	L40
30	L41
31	L42
32	L43
33	L44
34	L45
35	L46
36	L47
37	L48
38	L49
39	L50

Between-Subjects Factors

		N
VESSEL	а	17
	b	17
TRAWL	е	17
	n	17

Multivariate Tests^b

Effect		Value	F	Hypothesis df	Error df	Sig.
LENGTH	Pillai's Trace	a				
	Wilks' Lambda	.a				
	Hotelling's Trace	.a				
	Roy's Largest Root	.a				
LENGTH * VESSEL	Pillai's Trace	.a				
	Wilks' Lambda	.a				
	Hotelling's Trace	.a				
	Roy's Largest Root	.a				
LENGTH * TRAWL	Pillai's Trace	.a				
	Wilks' Lambda	.a				
	Hotelling's Trace	.a				
	Roy's Largest Root	.a				
LENGTH * VESSEL	Pillai's Trace	.a				
* TRAWL	Wilks' Lambda	.a				
	Hotelling's Trace	.a				
	Roy's Largest Root	а				

a. Cannot produce multivariate test statistics because of insufficient residual degrees of freedom.

b.

Design: Intercept+VESSEL+TRAWL+VESSEL * TRAWL Within Subjects Design: LENGTH
Mauchly's Test of Sphericity

Measure: MEASURE 1

						Epsilon ^a	
		Approx.			Greenhous		
Within Subjects Effect	Mauchly's W	Chi-Square	df	Sig.	e-Geisser	Huynh-Feldt	Lower-bou
LENGTH	.000		740		.105	.136).

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in t Tests of Within-Subjects Effects table.

b.

Design: Intercept+VESSEL+TRAWL+VESSEL * TRAWL Within Subjects Design: LENGTH

Tests of Within-Subjects Effects

		Type III Sum				
Source		of Squares	df	Mean Square	F	Sig.
LENGTH	Sphericity Assumed	15842.361	38	416.904	18.455	.000
	Greenhouse-Geisser	15842.361	3.998	3962.615	18.455	.000
	Huynh-Feldt	15842.361	5.151	3075.727	18.455	.000
	Lower-bound	15842.361	1.000	15842.361	18.455	.000
LENGTH * VESSEL	Sphericity Assumed	1307.599	38	34.411	1.523	.023
	Greenhouse-Geisser	1307.599	3.998	327.067	1.523	.200
	Huynh-Feldt	1307.599	5.151	253.865	1.523	.184
	Lower-bound	1307.599	1.000	1307.599	1.523	.227
LENGTH * TRAWL	Sphericity Assumed	793.197	38	20.874	.924	.603
	Greenhouse-Geisser	793.197	3.998	198.401	.924	.452
	Huynh-Feldt	793.197	5.151	153.996	.924	.469
	Lower-bound	793.197	1.000	793.197	.924	.344
LENGTH * VESSEL	Sphericity Assumed	5717.286	38	150.455	6.660	.000
* TRAWL	Greenhouse-Geisser	5717.286	3.998	1430.052	6.660	.000
	Huynh-Feldt	5717.286	5.151	1109.987	6.660	.000
	Lower-bound	5717 286	1 000	5717 286	6 660	015
		0717.200	1.000	0717.200	0.000	.010
Error(LENGTH)	Sphericity Assumed	25752.849	1140	22.590		
	Greenhouse-Geisser	25752.849	119.939	214.717		
	Huynh-Feldt	25752.849	154.523	166.660		
	Lower-bound	25752.849	30.000	858.428		

Tests of Within-Subjects Contrasts

Measure: MEASURE_1						
		Type III Sum				
Source	LENGTH	of Squares	df	Mean Square	F	Sig.
LENGTH	Level 1 vs. Later	242.595	1	242.595	84.120	.000
	Level 2 vs. Later	255.886	1	255.886	84.120	.000
	Level 4 vs. Later	270.299	1	270.299	64.120 94.120	.000
	Level 5 vs. Later	285.905	1	200.900	30.281	.000
	Level 6 vs. Later	262 866	1	240.000	35 235	.000
	Level 7 vs. Later	338.090	1	338.090	82.579	.000
	Level 8 vs. Later	360.254	1	360.254	82.579	.000
	Level 9 vs. Later	384.672	1	384.672	82.579	.000
	Level 10 vs. Later	338.840	1	338.840	33.136	.000
	Level 11 vs. Later	438.861	1	438.861	80.867	.000
	Level 12 vs. Later	382.010	1	382.010	32.752	.000
	Level 13 vs. Later	461.054	1	461.054	66.412	.000
	Level 14 vs. Later	544.756	1	544.756	79.939	.000
	Level 15 vs. Later	591.098	1	591.098	79.939	.000
	Level 16 vs. Later	496.863	1	496.863	33.797	.000
	Level 17 vs. Later	18.285	1	18.285	.510	.481
	Level 18 vs. Later	3.360	1	3.360	.054	.819
	Level 19 vs. Later	14.887	1	14.887	.291	.594
	Level 20 vs. Later	266.901	1	266.901	2.226	.146
	Level 21 vs. Later	1698.565	1	1698.565	13.985	.001
	Level 22 vs. Later	1922.058	1	1922.058	13.821	.001
	Level 23 vs. Later	2635.587	1	2635.587	19.110	.000
	Level 25 vs. Later	911.047	1	911.047	20.925	.000
1	Level 26 vs. Later	007.040	1	037.040	34.047	.000
1	Level 27 vs. Later	456 501	1	456 501	45 810	.000
1	Level 28 vs. Later	435 174	1	435 174	44 995	.000
1	Level 29 vs. Later	312.112	1	312.112	35.346	.000
1	Level 30 vs. Later	214.124	1	214.124	60.586	.000
1	Level 31 vs. Later	79.445	1	79.445	24.710	.000
1	Level 32 vs. Later	41.532	1	41.532	25.744	.000
1	Level 33 vs. Later	30.668	1	30.668	14.340	.001
1	Level 34 vs. Later	.918	1	.918	1.554	.222
	Level 35 vs. Later	5.274	1	5.274	3.513	.071
	Level 36 vs. Later	1.135E-05	1	1.135E-05	.000	.995
	Level 37 vs. Later	.041	1	.041	.094	.762
	Level 38 vs. Level 39	.472	1	.472	.767	.388
LENGTH * VESSEL	Level 1 vs. Later	.998	1	.998	.346	.561
	Level 2 vs. Later	1.052	1	1.052	.346	.561
	Level 3 vs. Later	1.112	1	1.112	.346	.561
	Level 4 vs. Later	1.176	1	1.176	.346	.561
	Level 5 vs. Later	9.184	1	9.184	1.158	.290
	Level 6 vs. Later	8.251	1	8.251	1.106	.301
	Level 7 vs. Later	1.676	1	1.0/0	.409	.527
	Level 9 vs. Later	1.786	1	1.786	.409	.527
	Level 10 vs. Later	1.907	1	1.907	.409	.527
	Level 10 vs. Later	200	1	2002	.020	.000
	Level 12 vs. Later	508	1	2.002	.303	.340
	Level 13 vs. Later	6.004	1	6 004	.044	360
	Level 14 vs. Later	2.369	1	2.369	.348	.560
	Level 15 vs. Later	2.571	1	2.571	.348	.560
	Level 16 vs. Later	22.584	1	22.584	1.536	.225
	Level 17 vs. Later	47.266	1	47.266	1.318	.260
	Level 18 vs. Later	77.900	1	77.900	1.242	.274
	Level 19 vs. Later	17.268	1	17.268	.337	.566
	Level 20 vs. Later	212.136	1	212.136	1.769	.194
1	Level 21 vs. Later	365.506	1	365.506	3.009	.093
1	Level 22 vs. Later	104.383	1	104.383	.751	.393
1	Level 23 vs. Later	361.188	1	361.188	2.619	.116
1	Level 24 vs. Later	97.361	1	97.361	2.236	.145
	Level 25 vs. Later	5.705	1	5.705	.227	.637
1	Level 26 vs. Later	.673	1	.673	.028	.869
1	Level 27 VS. Later	5.143	1	5.143	.516	.478
1	Level 20 vs. Later	1.083	1	1.083	.112	./40
1	evel 30 vs. Later	14.793	1	14.793	1.0/5	.205
	Level 31 vs. Later	176	1	3.491	.900	.320
1	Level 32 vs. Later	.173	1	.170	058	.017 811
	Level 33 vs. Later	158	1	158	074	788
1	Level 34 vs. Later	2.397	1	2.397	4.058	.053
1	Level 35 vs. Later	1.786	1	1.786	1.190	.284
	Level 36 vs. Later	.372	1	.372	1.579	.219
1	Level 37 vs. Later	.098	1	.098	.225	.639
	Level 38 vs. Level 39	.827	1	.827	1.344	.255
LENGTH * TRAWL	Level 1 vs. Later	.737	1	.737	.256	.617
1	Level 2 vs. Later	.777	1	.777	.256	.617
1	Level 3 vs. Later	.821	1	.821	.256	.617
1	Level 4 vs. Later	.869	1	.869	.256	.617
1	Level 5 vs. Later	.911	1	.911	.115	.737
1	Level 6 vs. Later	.538	1	.538	.072	.790
1	Level 7 vs. Later	.830	1	.830	.203	.656
1	Level & VS. Later	.884	1	.884	.203	.656
1	Level 10 vs. Later	.944	1	.944	.203	.656
1	Level 10 vs. Läller	./69	1	./69	.0/5	./86
1	Level 11 vs. Läller	.952	1	.952	.1/5	.6/8
1	level 13 vs. Later	10.188	1	10.188	.8/4	.35/
1	l evel 14 vs. Later	1.015	4	.015 1 209	.002	.903
1	Level 15 vs. Later	1.290	1	1.290	100	999
1	Level 16 vs. Later	100	1	100	013	Q10
	Level 17 vs. Later	2 507	1	2 507	070	793
1	level 18 vs. Later	102 719		102 719	1 620	210

Measure: MEASURE_1

Transformed Variable: Average

	Type III Sum				
Source	of Squares	df	Mean Square	F	Sig.
Intercept	230.314	1	230.314	84.120	.000
VESSEL	.947	1	.947	.346	.561
TRAWL	.700	1	.700	.256	.617
VESSEL * TRAWL	68.171	1	68.171	24.899	.000
Error	82.137	30	2.738		1

```
compute s10=sum(110 to 114).
compute s15=sum(115 to 119).
compute s20=sum(120 to 124).
compute s25=sum(125 to 129).
compute s30=sum(130 to 134).
compute s35=sum(135 to 139).
compute s40=sum(140 to 144).
compute s45=sum(145 to 150).
recode haul (1 thru 8=1) (9 thru highest=2) into period.
GLM
  s15 to s45 BY trawl period
  /WSFACTOR = length 7 helmert
  /METHOD = SSTYPE(3)
  /CRITERIA = ALPHA(.05)
  /WSDESIGN = length
  /EMMEANS=TABLES(trawl*period)
  /DESIGN = period trawl period*trawl .
```

General Linear Model

Within-Subjects Factors

Measure: MEASURE_1						
LENGTH	Dependent Variable					
1	S15					
2	S20					
3	S25					
4	S30					
5	S35					
6	S40					
7	S45					

Between-Subjects Factors

		N
TRAWL	е	17
	n	17
PERIOD	1.00	16
	2.00	18

Multivariate Tests^b

Effect		Value	F	Hypothesis df	Error df	Sig.
LENGTH	Pillai's Trace	.791	15.736 ^a	6.000	25.000	.000
	Wilks' Lambda	.209	15.736 ^a	6.000	25.000	.000
	Hotelling's Trace	3.777	15.736 ^a	6.000	25.000	.000
	Roy's Largest Root	3.777	15.736 ^a	6.000	25.000	.000
LENGTH * PERIOD	Pillai's Trace	.618	6.733 ^a	6.000	25.000	.000
	Wilks' Lambda	.382	6.733 ^a	6.000	25.000	.000
	Hotelling's Trace	1.616	6.733 ^a	6.000	25.000	.000
	Roy's Largest Root	1.616	6.733 ^a	6.000	25.000	.000
LENGTH * TRAWL	Pillai's Trace	.197	1.020 ^a	6.000	25.000	.435
	Wilks' Lambda	.803	1.020 ^a	6.000	25.000	.435
	Hotelling's Trace	.245	1.020 ^a	6.000	25.000	.435
	Roy's Largest Root	.245	1.020 ^a	6.000	25.000	.435
LENGTH * TRAWL	Pillai's Trace	.127	.605 ^a	6.000	25.000	.724
* PERIOD	Wilks' Lambda	.873	.605 ^a	6.000	25.000	.724
	Hotelling's Trace	.145	.605 ^a	6.000	25.000	.724
	Roy's Largest Root	.145	.605 ^a	6.000	25.000	.724

a. Exact statistic

b.

Design: Intercept+PERIOD+TRAWL+TRAWL * PERIOD Within Subjects Design: LENGTH

Mauchly's Test of Sphericity

Measure: MEASURE 1

	7	1	1	1	i .		
						Epsilon ^a	_
		Approx.			Greenhous		
Within Subjects Effect	Mauchly's W	Chi-Square	df	Sig.	e-Geisser	Huynh-Feldt	Lower-bou
LENGTH	.000	300.202	20	.000	.250	.286	

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in t Tests of Within-Subjects Effects table.

b.

Design: Intercept+PERIOD+TRAWL+TRAWL * PERIOD Within Subjects Design: LENGTH

Tests of Within-Subjects Effects

		Type III Sum				
Source		of Squares	df	Mean Square	F	Sig.
LENGTH	Sphericity Assumed	63286.398	6	10547.733	33.337	.000
	Greenhouse-Geisser	63286.398	1.499	42226.622	33.337	.000
	Huynh-Feldt	63286.398	1.718	36843.484	33.337	.000
	Lower-bound	63286.398	1.000	63286.398	33.337	.000
LENGTH * PERIOD	Sphericity Assumed	20874.078	6	3479.013	10.996	.000
	Greenhouse-Geisser	20874.078	1.499	13927.824	10.996	.000
	Huynh-Feldt	20874.078	1.718	12152.276	10.996	.000
	Lower-bound	20874.078	1.000	20874.078	10.996	.002
LENGTH * TRAWL	Sphericity Assumed	1922.979	6	320.496	1.013	.418
	Greenhouse-Geisser	1922.979	1.499	1283.070	1.013	.351
	Huynh-Feldt	1922.979	1.718	1119.502	1.013	.360
	Lower-bound	1922.979	1.000	1922.979	1.013	.322
LENGTH * TRAWL	Sphericity Assumed	843.945	6	140.658	.445	.848
* PERIOD	Greenhouse-Geisser	843.945	1.499	563.106	.445	.587
	Huynh-Feldt	843.945	1.718	491.320	.445	.614
	Lower-bound	843.945	1.000	843.945	.445	.510
Error(LENGTH)	Sphericity Assumed	56951.863	180	316.399		
	Greenhouse-Geisser	56951.863	44.962	1266.668		
	Huynh-Feldt	56951.863	51.531	1105.190		
	Lower-bound	56951.863	30.000	1898.395		

Tests of Within-Subjects	Contrasts
---------------------------------	-----------

		Type III Sum				
Source	LENGTH	of Squares	df	Mean Square	F	Sig.
LENGTH	Level 1 vs. Later	8947.059	1	8947.059	69.810	.000
	Level 2 vs. Later	12501.235	1	12501.235	64.273	.000
	Level 3 vs. Later	7421.939	1	7421.939	21.486	.000
	Level 4 vs. Later	30800.767	1	30800.767	20.416	.000
	Level 5 vs. Later	21507.163	1	21507.163	76.228	.000
	Level 6 vs. Level 7	3647.118	1	3647.118	59.775	.000
LENGTH * PERIOD	Level 1 vs. Later	3332.000	1	3332.000	25.998	.000
	Level 2 vs. Later	4435.598	1	4435.598	22.805	.000
	Level 3 vs. Later	2365.704	1	2365.704	6.849	.014
	Level 4 vs. Later	10052.375	1	10052.375	6.663	.015
	Level 5 vs. Later	6457.752	1	6457.752	22.888	.000
	Level 6 vs. Level 7	1169.471	1	1169.471	19.167	.000
LENGTH * TRAWL	Level 1 vs. Later	1.907	1	1.907	.015	.904
	Level 2 vs. Later	25.043	1	25.043	.129	.722
	Level 3 vs. Later	180.376	1	180.376	.522	.476
	Level 4 vs. Later	2307.412	1	2307.412	1.529	.226
	Level 5 vs. Later	26.044	1	26.044	.092	.763
	Level 6 vs. Level 7	16.504	1	16.504	.270	.607
LENGTH * TRAWL	Level 1 vs. Later	107.783	1	107.783	.841	.366
* PERIOD	Level 2 vs. Later	22.521	1	22.521	.116	.736
	Level 3 vs. Later	132.023	1	132.023	.382	.541
	Level 4 vs. Later	832.222	1	832.222	.552	.463
	Level 5 vs. Later	4.044	1	4.044	.014	.905
	Level 6 vs. Level 7	.621	1	.621	.010	.920
Error(LENGTH)	Level 1 vs. Later	3844.871	30	128.162		
	Level 2 vs. Later	5835.054	30	194.502		
	Level 3 vs. Later	10362.819	30	345.427		
	Level 4 vs. Later	45260.543	30	1508.685		
	Level 5 vs. Later	8464.248	30	282.142		
	Level 6 vs. Level 7	1830.437	30	61.015		

Measure: MEASURE_1

Transformed Variable: Average

	Type III Sum				
Source	of Squares	df	Mean Square	F	Sig.
Intercept	7149.132	1	7149.132	84.120	.000
PERIOD	2116.085	1	2116.085	24.899	.000
TRAWL	21.717	1	21.717	.256	.617
TRAWL * PERIOD	29.402	1	29.402	.346	.561
Error	2549.613	30	84.987		

Estimated Marginal Means

TRAWL * PERIOD

```
Measure: MEASURE_1
```

				95% Confidence Interva		
TRAWL	PERIOD	Mean	Std. Error	Lower Bound	Upper Bound	
е	1.00	20.696	3.259	14.040	27.353	
	2.00	6.754	3.073	.478	13.030	
n	1.00	24.161	3.259	17.504	30.817	
	2.00	6.492	3.073	.216	12.768	

GLM

```
s10 to s40 BY trawl period with haul
/WSFACTOR = length 7 helmert
/METHOD = SSTYPE(3)
/CRITERIA = ALPHA(.05)
/WSDESIGN = length
/EMMEANS=TABLES(trawl*period)
/DESIGN = period haul trawl period*trawl .
```

General Linear Model

Within-Subjects Factors

LENGTH	Dependent Variable
1	S10
2	S15
3	S20
4	S25
5	S30
6	S35
7	S40

Between-Subjects Factors

		N
TRAWL	е	17
	n	17
PERIOD	1.00	16
	2.00	18

Multivariate Tests^b

Effect		Value	F	Hypothesis df	Error df	Sig.
LENGTH	Pillai's Trace	.366	2.311 ^a	6.000	24.000	.067
	Wilks' Lambda	.634	2.311 ^a	6.000	24.000	.067
	Hotelling's Trace	.578	2.311 ^a	6.000	24.000	.067
	Roy's Largest Root	.578	2.311 ^a	6.000	24.000	.067
LENGTH * PERIOD	Pillai's Trace	.453	3.317 ^a	6.000	24.000	.016
	Wilks' Lambda	.547	3.317 ^a	6.000	24.000	.016
	Hotelling's Trace	.829	3.317 ^a	6.000	24.000	.016
	Roy's Largest Root	.829	3.317 ^a	6.000	24.000	.016
LENGTH * HAUL	Pillai's Trace	.233	1.217 ^a	6.000	24.000	.332
	Wilks' Lambda	.767	1.217 ^a	6.000	24.000	.332
	Hotelling's Trace	.304	1.217 ^a	6.000	24.000	.332
	Roy's Largest Root	.304	1.217 ^a	6.000	24.000	.332
LENGTH * TRAWL	Pillai's Trace	.220	1.125 ^a	6.000	24.000	.378
	Wilks' Lambda	.780	1.125 ^a	6.000	24.000	.378
	Hotelling's Trace	.281	1.125 ^a	6.000	24.000	.378
	Roy's Largest Root	.281	1.125 ^a	6.000	24.000	.378
LENGTH * TRAWL	Pillai's Trace	.130	.599 ^a	6.000	24.000	.728
* PERIOD	Wilks' Lambda	.870	.599 ^a	6.000	24.000	.728
	Hotelling's Trace	.150	.599 ^a	6.000	24.000	.728
	Roy's Largest Root	.150	.599 ^a	6.000	24.000	.728

a. Exact statistic

b.

Design: Intercept+PERIOD+HAUL+TRAWL+TRAWL * PERIOD Within Subjects Design: LENGTH

Mauchly's Test of Sphericity

Measure: MEASURE 1

_							
						Epsilon ^a	
		Approx.			Greenhous		
Within Subjects Effect	Mauchly's W	Chi-Square	df	Sig.	e-Geisser	Huynh-Feldt	Lower-bou
LENGTH	.000	319.481	20	.000	.248	.294	

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in t Tests of Within-Subjects Effects table.

b.

Design: Intercept+PERIOD+HAUL+TRAWL+TRAWL * PERIOD Within Subjects Design: LENGTH

Tests of Within-Subjects Effects

		Type III Sum				
Source		of Squares	df	Mean Square	F	Sig.
LENGTH	Sphericity Assumed	6316.006	6	1052.668	3.225	.005
	Greenhouse-Geisser	6316.006	1.487	4248.809	3.225	.063
	Huynh-Feldt	6316.006	1.764	3579.878	3.225	.054
	Lower-bound	6316.006	1.000	6316.006	3.225	.083
LENGTH * PERIOD	Sphericity Assumed	4194.512	6	699.085	2.142	.051
	Greenhouse-Geisser	4194.512	1.487	2821.670	2.142	.141
	Huynh-Feldt	4194.512	1.764	2377.427	2.142	.133
	Lower-bound	4194.512	1.000	4194.512	2.142	.154
LENGTH * HAUL	Sphericity Assumed	199.972	6	33.329	.102	.996
	Greenhouse-Geisser	199.972	1.487	134.522	.102	.846
	Huynh-Feldt	199.972	1.764	113.343	.102	.880
	Lower-bound	199.972	1.000	199.972	.102	.752
LENGTH * TRAWL	Sphericity Assumed	1923.909	6	320.651	.982	.439
	Greenhouse-Geisser	1923.909	1.487	1294.223	.982	.360
	Huynh-Feldt	1923.909	1.764	1090.461	.982	.372
	Lower-bound	1923.909	1.000	1923.909	.982	.330
LENGTH * TRAWL	Sphericity Assumed	859.203	6	143.200	.439	.852
* PERIOD	Greenhouse-Geisser	859.203	1.487	577.990	.439	.589
	Huynh-Feldt	859.203	1.764	486.992	.439	.623
	Lower-bound	859.203	1.000	859.203	.439	.513
Error(LENGTH)	Sphericity Assumed	56800.014	174	326.437		
	Greenhouse-Geisser	56800.014	43.110	1317.574		
	Huynh-Feldt	56800.014	51.165	1110.136		
	Lower-bound	56800.014	29.000	1958.621		

Tests of Within-Subjects Contrasts

		Type III Sum				
Source	LENGTH	of Squares	df	Mean Square	F	Sig.
LENGIH	Level 1 vs. Later	817.425	1	817.425	6.915	.014
	Level 2 vs. Later	775.246	1	775.246	4.196	.050
	Level 3 vs. Later	1944.942	1	1944.942	6.491	.016
	Level 4 vs. Later	2023.151	1	2023.151	3.827	.060
	Level 5 vs. Later	1567.611	1	1567.611	1.094	.304
	Level 6 vs. Level 7	1701.853	1	1701.853	7.619	.010
LENGTH * PERIOD	Level 1 vs. Later	581.799	1	581.799	4.922	.035
	Level 2 vs. Later	1283.976	1	1283.976	6.950	.013
	Level 3 vs. Later	1197.806	1	1197.806	3.997	.055
	Level 4 vs. Later	688.060	1	688.060	1.302	.263
	Level 5 vs. Later	1337.167	1	1337.167	.933	.342
	Level 6 vs. Level 7	520.226	1	520.226	2.329	.138
LENGTH * HAUL	Level 1 vs. Later	6.471	1	6.471	.055	.817
	Level 2 vs. Later	6.213	1	6.213	.034	.856
	Level 3 vs. Later	49.511	1	49.511	.165	.687
	Level 4 vs. Later	122.373	1	122.373	.231	.634
	Level 5 vs. Later	8.959	1	8.959	.006	.938
	Level 6 vs. Level 7	103.776	1	103.776	.465	.501
LENGTH * TRAWL	Level 1 vs. Later	29.376	1	29.376	.249	.622
	Level 2 vs. Later	5.440	1	5.440	.029	.865
	Level 3 vs. Later	40.985	1	40.985	.137	.714
	Level 4 vs. Later	262.092	1	262.092	.496	.487
	Level 5 vs. Later	2490.180	1	2490.180	1.737	.198
	Level 6 vs. Level 7	9.438	1	9.438	.042	.839
LENGTH * TRAWL	Level 1 vs. Later	36.479	1	36.479	.309	.583
* PERIOD	Level 2 vs. Later	130.402	1	130.402	.706	.408
	Level 3 vs. Later	38.941	1	38.941	.130	.721
	Level 4 vs. Later	203.033	1	203.033	.384	.540
	Level 5 vs. Later	801.798	1	801.798	.559	.461
	Level 6 vs. Level 7	2.614	1	2.614	.012	.915
Error(LENGTH)	Level 1 vs. Later	3428.036	29	118.208		
	Level 2 vs. Later	5357.451	29	184.740		
	Level 3 vs. Later	8689.964	29	299.654		
	Level 4 vs. Later	15329.867	29	528.616		
	Level 5 vs. Later	41563.402	29	1433.221		
	Level 6 vs. Level 7	6477.696	29	223.369		

Measure: MEASURE_1

Transformed Variable: Average

	Type III Sum				
Source	of Squares	df	Mean Square	F	Sig.
Intercept	600.557	1	600.557	6.915	.014
PERIOD	427.444	1	427.444	4.922	.035
HAUL	4.754	1	4.754	.055	.817
TRAWL	21.583	1	21.583	.249	.622
TRAWL * PERIOD	26.801	1	26.801	.309	.583
Error	2518.557	29	86.847		

Estimated Marginal Means

TRAWL * PERIOD

```
Measure: MEASURE_1
```

				95% Confide	ence Interval
TRAWL	PERIOD	Mean	Std. Error	Lower Bound	Upper Bound
е	1.00	19.634 ^a	4.413	10.608	28.661
	2.00	7.206 ^a	4.057	-1.092	15.504
n	1.00	23.009 ^a	4.413	13.983	32.036
	2.00	7.023 ^a	4.057	-1.275	15.321

a. Covariates appearing in the model are evaluated at the following values: HAUL = 9.0000.

compute total=sum(110 to 150).

```
*Sequence Charts .
TSPLOT VARIABLES= total
    /ID= haul
    /NOLOG
    /FORMAT NOFILL NOREFERENCE.
TSPLOT
MODEL: MOD 1.
```


SPSS output for Haddock

* data list free / haul * vessel(a1) trawl(a1) l10 to l50 (f4.1). * Copy data from spreadsheet. get file "c:\data files\sfia\nephrops\haddock1.sav". freq var=l10 to l50 / format=notable / stats=min max. Frequencies

Statistics

		L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L22	L23	L24	L25	L26	L27	L28	L29	L30	L31	L32	L33	L3	L35
Ν	Valio	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	31	34
	Miss	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	0
Min	nimum	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.)	.0
Ma	ximun	.0	.0	8.0	4.0	8.0	13.0	30.0	30.0	46.0	23.0	23.0	19.0	19.0	8.5	12.0	18.0	17.0	18.0	30.0	36.0	60.0	90.0	58.5	78.0	72.)	52.0

GLM

```
112 to 146 BY vessel trawl
/WSFACTOR = length 35 helmert
/METHOD = SSTYPE(3)
/CRITERIA = ALPHA(.05)
/WSDESIGN = length
/DESIGN = vessel trawl vessel*trawl .
```

General Linear Model

Within-Subjects Factors

Measure: M	EASURE_1
	Dependent
LENGTH	Variable
1	L12
2	L13
3	L14
4	L15
5	L16
6	L17
7	L18
8	L19
9	L20
10	L21
11	L22
12	L23
13	L24
14	L25
15	L26
16	L27
17	L28
18	L29
19	L30
20	L31
21	L32
22	L33
23	L34
24	L35
25	L36
26	L37
27	L38
28	L39
29	L40
30	L41
31	L42
32	L43
33	L44
34	L45
35	L46

Between-Subjects Factors

		N
VESSEL	а	17
	b	17
TRAWL	е	17
	n	17

Multivariate Tests b

Effect		Value	F	Hypothesis df	Error df	Sig.
LENGTH	Pillai's Trace	a				
	Wilks' Lambda	a				•
	Hotelling's Trace	a				
	Roy's Largest Root	a				
LENGTH * VESSEL	Pillai's Trace	a				•
	Wilks' Lambda	a				
	Hotelling's Trace	.a				
	Roy's Largest Root	a				
LENGTH * TRAWL	Pillai's Trace	a				
	Wilks' Lambda	a				
	Hotelling's Trace	a				
	Roy's Largest Root	a				
LENGTH * VESSEL	Pillai's Trace	a				
* TRAWL	Wilks' Lambda	a				
	Hotelling's Trace	a				
	Roy's Largest Root	a				
		-	-	-	-	-

a. Cannot produce multivariate test statistics because of insufficient residual degrees of freedom.

b.

Design: Intercept+VESSEL+TRAWL+VESSEL * TRAWL Within Subjects Design: LENGTH

Mauchly's Test of Sphericity b

Measure: MEASURE 1

						Epsilon ^a	
Within Subjects Effect	Mauchlv's W	Approx. Chi-Square	df	Sia.	Greenhouse -Geisser	Huvnh-Feldt	Lower-bound
LENGTH	.000		594		.131	.172	.029

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table. b.

Design: Intercept+VESSEL+TRAWL+VESSEL * TRAWL Within Subjects Design: LENGTH

Measure: MEASURE_1

		Type III Sum				
Source		of Squares	df	Mean Square	F	Sig.
LENGTH	Sphericity Assumed	28021.059	34	824.149	18.569	.000
	Greenhouse-Geisser	28021.059	4.449	6297.922	18.569	.000
	Huynh-Feldt	28021.059	5.842	4796.253	18.569	.000
	Lower-bound	28021.059	1.000	28021.059	18.569	.000
LENGTH * VESSEL	Sphericity Assumed	3645.286	34	107.214	2.416	.000
	Greenhouse-Geisser	3645.286	4.449	819.303	2.416	.046
	Huynh-Feldt	3645.286	5.842	623.949	2.416	.030
	Lower-bound	3645.286	1.000	3645.286	2.416	.131
LENGTH * TRAWL	Sphericity Assumed	6038.789	34	177.611	4.002	.000
	Greenhouse-Geisser	6038.789	4.449	1357.259	4.002	.003
	Huynh-Feldt	6038.789	5.842	1033.635	4.002	.001
	Lower-bound	6038.789	1.000	6038.789	4.002	.055
LENGTH * VESSEL	Sphericity Assumed	8819.623	34	259.401	5.845	.000
* TRAWL	Greenhouse-Geisser	8819.623	4.449	1982.270	5.845	.000
	Huynh-Feldt	8819.623	5.842	1509.620	5.845	.000
	Lower-bound	8819.623	1.000	8819.623	5.845	.022
Error(LENGTH)	Sphericity Assumed	45269.849	1020	44.382		
	Greenhouse-Geisser	45269.849	133.478	339.157		
	Huynh-Feldt	45269.849	175.268	258.289		
	Lower-bound	45269.849	30.000	1508.995		

Tests of Within-Subjects Effects

Commercial proving trials of a new prawn trawl design

Source	LENGTH	Type III Sum of Souares	df	Mean Square	F	Sig.
LENGTH	Level 1 vs. Later	543.572	1	543.572	62.677	.000
	Level 2 vs. Later	613.592	1	613.592	83.641	.000
	Level 3 vs. Later	573.621	1	573.621	47.581	.000
	Level 4 vs. Later	354.535	1	354.535	15.234	.000
	Level 5 vs. Later	174.560	1	174.560	2.752	.108
	Level 6 vs. Later	3.641	1	3.641	2.956	.096
	Level 8 vs. Later	251.358	1	251.358	5.487	.026
	Level 9 vs. Later	353.207	1	353.207	12.471	.001
	Level 10 vs. Later	646.739	1	646.739	24.686	.000
	Level 11 vs. Later	598.245	1	598.245	19.970	.000
	Level 12 vs. Later	951.582	1	951.582	57.160	.000
	Level 13 vs. Later	870.426	1	870.426	32.238	.000
	Level 14 vs. Later	780.843	1	780.843	51.325	.000
	Level 15 vs. Later	1039.943	1	1039.943	40.163	.000
	Level 16 vs. Later	667.686	1	667.686	21.643	.000
	Level 18 vs. Later	1 751	1	1 751	0.229	.029
	Level 19 vs. Later	540.912	1	540.912	5.623	.024
	Level 20 vs. Later	1764.093	1	1764.093	8.712	.006
	Level 21 vs. Later	2294.693	1	2294.693	24.467	.000
	Level 22 vs. Later	4361.338	1	4361.338	17.335	.000
	Level 23 vs. Later	5140.470	1	5140.470	38.927	.000
	Level 24 vs. Later	3405.905	1	3405.905	35.938	.000
	Level 25 vs. Later	1691.677	1	1691.677	45.800	.000
	Level 26 vs. Later	796.845	1	796.845	51.682	.000
	Level 27 vs. Later	627.472	1	627.472	31.528	.000
	Level 28 vs. Later	214.040	1	214.040	22.581	.000
	Lever∠avs. Later	233.368	1	233.368	23.950	.000
	Level 30 VS. Later	35.549	1	35.549	11.344 8 GRR	.002
	Level 32 vs. Later	5.185	1	5.185	4.063	.005
	Level 33 vs. Later	1.520	1	1.520	3.467	.072
	Level 34 vs. Level 35	.026	1	.026	.271	.606
ENGTH * VESSEL	Level 1 vs. Later	17.927	1	17.927	2.067	.161
	Level 2 vs. Later	13.051	1	13.051	1.779	.192
	Level 3 vs. Later	13.189	1	13.189	1.094	.304
	Level 4 vs. Later	.096	1	.096	.004	.949
	Level 5 vs. Later	39.705	1	39.705	.626	.435
	Level 6 vs. Later	185.418	1	185.418	3.566	.069
	Level 8 vs. Later	101 030	1	101 030	2 205	.017
	Level 9 vs. Later	127.656	1	127.656	4.507	.042
	Level 10 vs. Later	104.797	1	104.797	4.000	.055
	Level 11 vs. Later	120.778	1	120.778	4.032	.054
	Level 12 vs. Later	24.826	1	24.826	1.491	.232
	Level 13 vs. Later	49.367	1	49.367	1.828	.186
	Level 14 vs. Later	1.816	1	1.816	.119	.732
	Level 15 vs. Later	23.344	1	23.344	.902	.350
	Level 16 vs. Later	11.886	1	11.886	.385	.539
	Level 17 vs. Later	.858	1	.858	.014	.908
	Level 19 vs. Later	1112.090	1	1112.000	11 560	.030
	Level 20 vs. Later	137.276	1	137.276	.678	.417
	Level 21 vs. Later	80.258	1	80.258	.856	.362
	Level 22 vs. Later	128.721	1	128.721	.512	.480
	Level 23 vs. Later	495.218	1	495.218	3.750	.062
	Level 24 vs. Later	3.811	1	3.811	.040	.842
	Level 25 vs. Later	78.726	1	78.726	2.131	.155
	Level 26 vs. Later	2.401	1	2.401	.156	.696
	Level 27 vs. Later	9.798	1	9.798	.492	.488
	Level 28 vs. Later	3.174	1	3.174	.335	.567
	Level 30 vs. Later	.226	1	.226	.023	.880
	Level 31 vs. Läter	.512	1	.512	.163	.689
	Level 32 vs. Later	.057	1	.037 864	677	.004
	Level 32 vs. Later	827	1	827	1.887	.417
	Level 34 vs. Level 35	.026	1	.026	.271	.606
NGTH * TRAWL	Level 1 vs. Later	156.944	1	156.944	18.097	.000
	Level 2 vs. Later	147.810	1	147.810	20.149	.000
	Level 3 vs. Later	154.849	1	154.849	12.844	.001
	Level 4 vs. Later	71.462	1	71.462	3.071	.090
	Level 5 vs. Later	.267	1	.267	.004	.949
	Level 5 vs. Later	10.922	1	10.922	.210	.650
	Level / vs. Later	11./88	1	11./88	.111	.741
	Level 6 VS. Later	12.418	1	12.418	.2/1	.606
	Level 10 vs. Latter	30.920	1	30.420	4.608	.253
	Level 11 vs. Later	40.726	1	40.726	1 360	.040.
	Level 12 vs. Later	220.602	1	220.602	13.251	.001
	Level 13 vs. Later	209.418	1	209.418	7.756	.009
	Level 14 vs. Later	227.277	1	227.277	14.939	.001
	Level 15 vs. Later	126.941	1	126.941	4.902	.035
	Level 16 vs. Later	261.748	1	261.748	8.485	.007
	Level 17 vs. Later	73.727	1	73.727	1.166	.289
	Level 18 vs. Later	24.898	1	24.898	.451	.507
	Level 19 vs. Later	1279.011	1	1279.011	13.295	.001
	Level 20 vs. Later	1310.181	1	1310.181	6.471	.016
	Level 21 vs. Later	523.821	1	523.821	5.585	.025
	Level 22 vs. Later	252.738	1	252.738	1.005	.324
	Level 23 vs. Later	134.453	1	134.453	1.018	.321
	Level 24 vs. Later	559.930	1	559.930	5.908	.021
	Level 25 vs. Later	18.464	1	18.464	.500	.485
	Level 26 VS. Later	81.743	1	81.743	5.302	.028
	Level 27 vs. Läter	247.013	1	247.013	12.401	.001
	Level 29 vs. Later	150 53	÷	R2 031	6 459	A40
	Level 30 vs. Later	3.265	1	3.265	1.042	.016 31F
	Level 31 vs. Later	6.434	1	6.434	3.811	.060

Tests of Within-Subjects Contrasts

Measure: MEASURE_1 Transformed Variable: Average Type III Sum of Squares Source df Mean Square F Sig 580.989 580.989 101.550 .000 Intercept 1 VESSEL 7.064 1 7.064 1.235 .275 TRAWL 114.802 1 114.802 20.066 .000 VESSEL * TRAWL 57.511 57.511 10.052 .003 1 Error 171.637 30 5.721 compute s10=sum(110 to 114). compute s15=sum(115 to 119). compute s20=sum(120 to 124). compute s25=sum(125 to 129). compute s30=sum(130 to 134). compute s35=sum(135 to 139). compute s40=sum(140 to 144). compute s45=sum(145 to 149). recode haul (1 thru 8=1) (9 thru highest=2) into period. GLM s10 to s45 BY trawl period /WSFACTOR = length 8 helmert /METHOD = SSTYPE(3) /CRITERIA = ALPHA(.05) /WSDESIGN = length /EMMEANS=TABLES(trawl*period) /DESIGN = period trawl period*trawl .

General Linear Model

Within-Subjects Factors

Measure: MEASURE_1					
LENGTH	Dependent Variable				
1	S10				
2	S15				
3	S20				
4	S25				
5	S30				
6	S35				
7	S40				
8	S45				

Between-Subjects Factors

		N
TRAWL	е	17
	n	17
PERIOD	1.00	16
	2.00	18

Multivariate Tests b

Effect		Value	F	Hypothesis df	Error df	Sig.
LENGTH	Pillai's Trace	.865	21.914 ^a	7.000	24.000	.000
	Wilks' Lambda	.135	21.914 ^a	7.000	24.000	.000
	Hotelling's Trace	6.392	21.914 ^a	7.000	24.000	.000
	Roy's Largest Root	6.392	21.914 ^a	7.000	24.000	.000
LENGTH * PERIOD	Pillai's Trace	.399	2.274 ^a	7.000	24.000	.063
	Wilks' Lambda	.601	2.274 ^a	7.000	24.000	.063
	Hotelling's Trace	.663	2.274 ^a	7.000	24.000	.063
	Roy's Largest Root	.663	2.274 ^a	7.000	24.000	.063
LENGTH * TRAWL	Pillai's Trace	.579	4.724 ^a	7.000	24.000	.002
	Wilks' Lambda	.421	4.724 ^a	7.000	24.000	.002
	Hotelling's Trace	1.378	4.724 ^a	7.000	24.000	.002
	Roy's Largest Root	1.378	4.724 ^a	7.000	24.000	.002
LENGTH * TRAWL * PERIOD	Pillai's Trace	.364	1.963 ^a	7.000	24.000	.103
	Wilks' Lambda	.636	1.963 ^a	7.000	24.000	.103
	Hotelling's Trace	.573	1.963 ^a	7.000	24.000	.103
	Roy's Largest Root	.573	1.963 ^a	7.000	24.000	.103

a. Exact statistic

b.

Design: Intercept+PERIOD+TRAWL+TRAWL * PERIOD Within Subjects Design: LENGTH

Mauchly's Test of Sphericity b

Measure: MEASURE_1

						Epsilon ^a	
Within Subjects Effect	Mauchly's W	Approx. Chi-Square	df	Sig.	Greenhouse -Geisser	Huynh-Feldt	Lower-bound
LENGTH	.000	347.128	27	.000	.244	.283	.143

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table. b.

Design: Intercept+PERIOD+TRAWL+TRAWL * PERIOD Within Subjects Design: LENGTH

Tests	of Within-	Subjects	Effects
-------	------------	----------	---------

Measure: MEASURE_1	
	_

Source		Type III Sum of Squares	df	Mean Square	F	Sig.
LENGTH	Sphericity Assumed	134624.792	7	19232.113	34.077	.000
	Greenhouse-Geisser	134624.792	1.709	78779.566	34.077	.000
	Huynh-Feldt	134624.792	1.983	67888.713	34.077	.000
	Lower-bound	134624.792	1.000	134624.792	34.077	.000
LENGTH * PERIOD	Sphericity Assumed	37245.969	7	5320.853	9.428	.000
	Greenhouse-Geisser	37245.969	1.709	21795.549	9.428	.001
	Huynh-Feldt	37245.969	1.983	18782.431	9.428	.000
	Lower-bound	37245.969	1.000	37245.969	9.428	.005
LENGTH * TRAWL	Sphericity Assumed	25079.001	7	3582.714	6.348	.000
	Greenhouse-Geisser	25079.001	1.709	14675.698	6.348	.005
	Huynh-Feldt	25079.001	1.983	12646.862	6.348	.003
	Lower-bound	25079.001	1.000	25079.001	6.348	.017
LENGTH * TRAWL * PERIOD	Sphericity Assumed	12474.031	7	1782.004	3.158	.003
	Greenhouse-Geisser	12474.031	1.709	7299.538	3.158	.058
	Huynh-Feldt	12474.031	1.983	6290.416	3.158	.050
	Lower-bound	12474.031	1.000	12474.031	3.158	.086
Error(LENGTH)	Sphericity Assumed	118517.408	210	564.369		
	Greenhouse-Geisser	118517.408	51.266	2311.796		
	Huynh-Feldt	118517.408	59.491	1992.202		
	Lower-bound	118517.408	30.000	3950.580		

Measure: MEASURE_1						
Source	LENGTH	Type III Sum of Squares	df	Mean Square	F	Sia.
LENGTH	Level 1 vs. Later	13323.000	1	13323.000	75.603	.000
	Level 2 vs. Later	2681.134	1	2681.134	2.921	.098
	Level 3 vs. Later	14605.564	1	14605.564	37.841	.000
	Level 4 vs. Later	7031.097	1	7031.097	21.944	.000
	Level 5 vs. Later	100703.187	1	100703.187	35.545	.000
	Level 6 vs. Later	40085.309	1	40085.309	91.394	.000
	Level 7 vs. Level 8	1243.883	1	1243.883	43.224	.000
LENGTH * PERIOD	Level 1 vs. Later	1077.454	1	1077.454	6.114	.019
	Level 2 vs. Later	6815.286	1	6815.286	7.425	.011
	Level 3 vs. Later	5731.931	1	5731.931	14.850	.001
	Level 4 vs. Later	939.759	1	939.759	2.933	.097
	Level 5 vs. Later	29078.010	1	29078.010	10.264	.003
	Level 6 vs. Later	4661.309	1	4661.309	10.628	.003
	Level 7 vs. Level 8	34.118	1	34.118	1.186	.285
LENGTH * TRAWL	Level 1 vs. Later	3225.695	1	3225.695	18.305	.000
	Level 2 vs. Later	1.802	1	1.802	.002	.965
	Level 3 vs. Later	2473.466	1	2473.466	6.408	.017
	Level 4 vs. Later	1316.553	1	1316.553	4.109	.052
	Level 5 vs. Later	20455.267	1	20455.267	7.220	.012
	Level 6 vs. Later	5487.020	1	5487.020	12.510	.001
	Level 7 vs. Level 8	282.092	1	282.092	9.803	.004
LENGTH * TRAWL * PERIOD	Level 1 vs. Later	272.619	1	272.619	1.547	.223
	Level 2 vs. Later	3413.970	1	3413.970	3.719	.063
	Level 3 vs. Later	1905.706	1	1905.706	4.937	.034
	Level 4 vs. Later	261.928	1	261.928	.817	.373
	Level 5 vs. Later	9830.705	1	9830.705	3.470	.072
	Level 6 vs. Later	185.020	1	185.020	.422	.521
	Level 7 vs. Level 8	30.445	1	30.445	1.058	.312
Error(LENGTH)	Level 1 vs. Later	5286.705	30	176.223		
	Level 2 vs. Later	27537.604	30	917.920		
	Level 3 vs. Later	11579.273	30	385.976		
	Level 4 vs. Later	9612.454	30	320.415		
	Level 5 vs. Later	84993.184	30	2833.106		
	Level 6 vs. Later	13157.965	30	438.599		
	Level 7 vs. Level 8	863.319	30	28.777		

Tests of Within-Subjects Contrasts

Measure: MEASURE_1 Transformed Variable: Average Type III Sum Source of Squares df Mean Square F Sig. Intercept 11120.490 11120.490 101.550 .000 1 PERIOD 1100.787 1 1100.787 10.052 .003 TRAWL 2197.390 1 2197.390 20.066 .000 TRAWL * PERIOD 135.206 1 135.206 1.235 .275 3285.235 Error 30 109.508

Estimated Marginal Means

TRAWL * PERIOD

Measure: MEASURE_1										
				95% Confide	ence Interval					
TRAWL	PERIOD	Mean	Std. Error	Lower Bound	Upper Bound					
е	1.00	13.766	3.700	6.210	21.322					
	2.00	6.361	3.488	763	13.485					
n	1.00	33.867	3.700	26.311	41.423					
	2.00	18.472	3.488	11.348	25.596					

GLM

```
s10 to s40 BY trawl period with haul
/WSFACTOR = length 7 helmert
/METHOD = SSTYPE(3)
/CRITERIA = ALPHA(.05)
/WSDESIGN = length
/EMMEANS=TABLES(trawl*period)
/DESIGN = period haul trawl period*trawl .
```

General Linear Model

Within-Subjects Factors

Measure: MEASURE_1							
LENGTH	Dependent Variable						
1	S10						
2	S15						
3	S20						
4	S25						
5	S30						
6	S35						
7	S40						

_

Between-Subjects Factors

		N
TRAWL	е	17
	n	17
PERIOD	1.00	16
	2.00	18

Multivariate Tests b

Effect		Value	F	Hypothesis df	Error df	Sig.
LENGTH	Pillai's Trace	.467	3.501 ^a	6.000	24.000	.012
	Wilks' Lambda	.533	3.501 ^a	6.000	24.000	.012
	Hotelling's Trace	.875	3.501 ^a	6.000	24.000	.012
	Roy's Largest Root	.875	3.501 ^a	6.000	24.000	.012
LENGTH * PERIOD	Pillai's Trace	.311	1.802 ^a	6.000	24.000	.141
	Wilks' Lambda	.689	1.802 ^a	6.000	24.000	.141
	Hotelling's Trace	.451	1.802 ^a	6.000	24.000	.141
	Roy's Largest Root	.451	1.802 ^a	6.000	24.000	.141
LENGTH * HAUL	Pillai's Trace	.280	1.553 ^a	6.000	24.000	.204
	Wilks' Lambda	.720	1.553 ^a	6.000	24.000	.204
	Hotelling's Trace	.388	1.553 ^a	6.000	24.000	.204
	Roy's Largest Root	.388	1.553 ^a	6.000	24.000	.204
LENGTH * TRAWL	Pillai's Trace	.497	3.957 ^a	6.000	24.000	.007
	Wilks' Lambda	.503	3.957 ^a	6.000	24.000	.007
	Hotelling's Trace	.989	3.957 ^a	6.000	24.000	.007
	Roy's Largest Root	.989	3.957 ^a	6.000	24.000	.007
LENGTH * TRAWL * PERIOD	Pillai's Trace	.336	2.022 ^a	6.000	24.000	.102
	Wilks' Lambda	.664	2.022 ^a	6.000	24.000	.102
	Hotelling's Trace	.505	2.022 ^a	6.000	24.000	.102
	Roy's Largest Root	.505	2.022 ^a	6.000	24.000	.102

a. Exact statistic

b.

.. Design: Intercept+PERIOD+HAUL+TRAWL+TRAWL * PERIOD Within Subjects Design: LENGTH

Mauchly's Test of Sphericity b

Measure: MEASURE_1

						Epsilon ^a	
Within Subjects Effect	Mauchly's W	Approx. Chi-Square	df	Sig.	Greenhouse -Geisser	Huynh-Feldt	Lower-bound
LENGTH	.000	231.079	20	.000	.278	.333	.167

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table. b.

Design: Intercept+PERIOD+HAUL+TRAWL+TRAWL * PERIOD Within Subjects Design: LENGTH

Tests of Within-Subjects Effects

		Type III Sum				
Source		of Squares	df	Mean Square	F	Sig.
LENGTH	Sphericity Assumed	9884.211	6	1647.369	2.545	.022
	Greenhouse-Geisser	9884.211	1.667	5929.760	2.545	.098
	Huynh-Feldt	9884.211	2.000	4941.405	2.545	.087
	Lower-bound	9884.211	1.000	9884.211	2.545	.121
LENGTH * PERIOD	Sphericity Assumed	13540.237	6	2256.706	3.486	.003
	Greenhouse-Geisser	13540.237	1.667	8123.092	3.486	.046
	Huynh-Feldt	13540.237	2.000	6769.158	3.486	.037
	Lower-bound	13540.237	1.000	13540.237	3.486	.072
LENGTH * HAUL	Sphericity Assumed	2085.454	6	347.576	.537	.780
	Greenhouse-Geisser	2085.454	1.667	1251.111	.537	.556
	Huynh-Feldt	2085.454	2.000	1042.579	.537	.587
	Lower-bound	2085.454	1.000	2085.454	.537	.470
LENGTH * TRAWL	Sphericity Assumed	22619.403	6	3769.901	5.824	.000
	Greenhouse-Geisser	22619.403	1.667	13569.888	5.824	.008
	Huynh-Feldt	22619.403	2.000	11308.097	5.824	.005
	Lower-bound	22619.403	1.000	22619.403	5.824	.022
LENGTH * TRAWL * PERIOD	Sphericity Assumed	12306.349	6	2051.058	3.169	.006
	Greenhouse-Geisser	12306.349	1.667	7382.855	3.169	.060
	Huynh-Feldt	12306.349	2.000	6152.301	3.169	.049
	Lower-bound	12306.349	1.000	12306.349	3.169	.086
Error(LENGTH)	Sphericity Assumed	112628.448	174	647.290		
	Greenhouse-Geisser	112628.448	48.340	2329.943		
	Huynh-Feldt	112628.448	58.008	1941.594		
	Lower-bound	112628.448	29.000	3883.740		

Measure: MEASURE_1						
		Type III Sum				
Source	LENGTH	of Squares	df	Mean Square	F	Sig.
LENGTH	Level 1 vs. Later	1406.662	1	1406.662	5.859	.022
	Level 2 vs. Later	499.224	1	499.224	.506	.483
	Level 3 vs. Later	935.929	1	935.929	1.636	.211
	Level 4 vs. Later	2866.864	1	2866.864	5.535	.026
	Level 5 vs. Later	5265.912	1	5265.912	1.939	.174
	Level 6 vs. Level 7	3705.963	1	3705.963	9.317	.005
LENGTH * PERIOD	Level 1 vs. Later	349.331	1	349.331	1.455	.237
	Level 2 vs. Later	7235.766	1	7235.766	7.334	.011
	Level 3 vs. Later	3178.925	1	3178.925	5.556	.025
	Level 4 vs. Later	148.123	1	148.123	.286	.597
	Level 5 vs. Later	6463.438	1	6463.438	2.380	.134
	Level 6 vs. Level 7	495.630	1	495.630	1.246	.273
LENGTH * HAUL	Level 1 vs. Later	1.007	1	1.007	.004	.949
	Level 2 vs. Later	2010.354	1	2010.354	2.038	.164
	Level 3 vs. Later	154.225	1	154.225	.270	.608
	Level 4 vs. Later	281.961	1	281.961	.544	.467
	Level 5 vs. Later	3.219	1	3.219	.001	.973
	Level 6 vs. Level 7	144.598	1	144.598	.364	.551
LENGTH * TRAWL	Level 1 vs. Later	4317.845	1	4317.845	17.983	.000
	Level 2 vs. Later	86.814	1	86.814	.088	.769
	Level 3 vs. Later	4242.037	1	4242.037	7.414	.011
	Level 4 vs. Later	3508.500	1	3508.500	6.774	.014
	Level 5 vs. Later	15996.501	1	15996.501	5.890	.022
	Level 6 vs. Level 7	4313.419	1	4313.419	10.844	.003
LENGTH * TRAWL * PERIOD	Level 1 vs. Later	356.227	1	356.227	1.484	.233
	Level 2 vs. Later	3960.682	1	3960.682	4.014	.055
	Level 3 vs. Later	2611.647	1	2611.647	4.565	.041
	Level 4 vs. Later	53.728	1	53.728	.104	.750
	Level 5 vs. Later	9655.479	1	9655.479	3.555	.069
	Level 6 vs. Level 7	267.684	1	267.684	.673	.419
Error(LENGTH)	Level 1 vs. Later	6962.993	29	240.103		
	Level 2 vs. Later	28611.879	29	986.617		
	Level 3 vs. Later	16591.777	29	572.130		
	Level 4 vs. Later	15019.388	29	517.910		
	Level 5 vs. Later	78766.641	29	2716.091		
	Level 6 vs. Level 7	11535.759	29	397.785		

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Transformed	Variable:	Average
-------------	-----------	---------

	Type III Sum				
Source	of Squares	df	Mean Square	F	Sig.
Intercept	1531.282	1	1531.282	10.447	.003
PERIOD	170.284	1	170.284	1.162	.290
HAUL	47.113	1	47.113	.321	.575
TRAWL	2862.640	1	2862.640	19.531	.000
TRAWL * PERIOD	178.442	1	178.442	1.217	.279
Error	4250.514	29	146.569		

Estimated Marginal Means

TRAWL * PERIOD

Measure: MEASURE_1										
				95% Confide	ence Interval					
TRAWL	PERIOD	Mean	Std. Error	Lower Bound	Upper Bound					
е	1.00	13.570 ^a	5.733	1.844	25.295					
	2.00	9.192 ^a	5.271	-1.588	19.972					
n	1.00	36.543 ^a	5.733	24.817	48.269					
	2.00	22.986 ^a	5.271	12.206	33.766					

a. Covariates appearing in the model are evaluated at the following values: HAUL = 9.0000.

SPSS output for Whiting

* data list free / haul * vessel(a1) trawl(a1) l10 to l50 (f4.1). * Copy data from spreadsheet. get file "c:\data files\sfia\nephrops\whiting1.sav". freq var=l10 to l50 / format=notable / stats=min max.

Frequencies

Statistics

		L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L22	L23	L24	L25	L26	L27	L28	L29	L30	L31	L32	L33	L3	L35
Ν	Valic	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	31	34
	Miss	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	0
Mini	mum	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	8.0	8.5	20.0	18.0	16.0	8.0	8.0	.0	.0	.0	.0	.0	.)	.0
Мах	imun	.0	.0	.0	.0	6.0	6.0	.0	13.0	8.0	20.0	40.0	12.0	85.0	28.0	'04.0	80.0	40.0	26.0	14.0	26.0	00.0	60.0	40.0	33.0	16.)	13.0

GLM

```
112 to 139 BY vessel trawl
/WSFACTOR = length 28 helmert
/METHOD = SSTYPE(3)
/CRITERIA = ALPHA(.05)
/WSDESIGN = length
/DESIGN = vessel trawl vessel*trawl .
```

General Linear Model

Within-Subjects Factors

Measure: N	IEASURE_1
	Dependent
LENGTH	Variable
1	L12
2	L13
3	L14
4	L15
5	L16
6	L17
7	L18
8	L19
9	L20
10	L21
11	L22
12	L23
13	L24
14	L25
15	L26
16	L27
17	L28
18	L29
19	L30
20	L31
21	L32
22	L33
23	L34
24	L35
25	L36
26	L37
27	L38
28	L39

Between-Subjects Factors

		N
VESSEL	а	17
	b	17
TRAWL	е	17
	n	17

Effect		Value	F	Hypothesis df	Error df	Sig.
LENGTH	Pillai's Trace	.987	18.719 ^a	25.000	6.000	.001
	Wilks' Lambda	.013	18.719 ^a	25.000	6.000	.001
	Hotelling's Trace	77.996	18.719 ^a	25.000	6.000	.001
	Roy's Largest Root	77.996	18.719 ^a	25.000	6.000	.001
LENGTH * VESSEL	Pillai's Trace	.908	2.370 ^a	25.000	6.000	.143
	Wilks' Lambda	.092	2.370 ^a	25.000	6.000	.143
	Hotelling's Trace	9.874	2.370 ^a	25.000	6.000	.143
	Roy's Largest Root	9.874	2.370 ^a	25.000	6.000	.143
LENGTH * TRAWL	Pillai's Trace	.971	8.013 ^a	25.000	6.000	.008
	Wilks' Lambda	.029	8.013 ^a	25.000	6.000	.008
	Hotelling's Trace	33.386	8.013 ^a	25.000	6.000	.008
	Roy's Largest Root	33.386	8.013 ^a	25.000	6.000	.008
LENGTH * VESSEL	Pillai's Trace	.851	1.375 ^a	25.000	6.000	.368
* TRAWL	Wilks' Lambda	.149	1.375 ^a	25.000	6.000	.368
	Hotelling's Trace	5.730	1.375 ^a	25.000	6.000	.368
	Roy's Largest Root	5.730	1.375 ^a	25.000	6.000	.368

Multivariate Tests b

a. Exact statistic b.

. Design: Intercept+VESSEL+TRAWL+VESSEL * TRAWL Within Subjects Design: LENGTH

Mauchly's Test of Sphericity b

Measure: MEASURE_1

					Epsilon ^a		
		Approx.			Greenhouse		
Within Subjects Effect	Mauchly's W	Chi-Square	df	Sig.	-Geisser	Huynh-Feldt	Lower-bound
LENGTH	.000		377		.085	.101	.037

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. . Design: Intercept+VESSEL+TRAWL+VESSEL * TRAWL Within Subjects Design: LENGTH

Tests of	Within-Subject	ts Effects
----------	----------------	------------

		Type III Sum	45	Maan Course		Circ
	Sphericity Assumed	01 Squares	0T 27	234765 007	F 81 530	Sig.
LENGTH		6338681 021	21	234703.337	81.530	.000
	Greennouse-Geisser	0000001.921	2.200	2770059.738	81.530	.000
	Huynn-Feldt	6338681.921	2.735	2317308.186	81.530	.000
	Lower-bound	6338681.921	1.000	6338681.921	81.530	.000
LENGTH * VESSEL	Sphericity Assumed	210316.262	27	7789.491	2.705	.000
	Greenhouse-Geisser	210316.262	2.288	91910.056	2.705	.067
	Huynh-Feldt	210316.262	2.735	76887.845	2.705	.056
	Lower-bound	210316.262	1.000	210316.262	2.705	.110
LENGTH * TRAWL	Sphericity Assumed	1516455.774	27	56165.029	19.505	.000
	Greenhouse-Geisser	1516455.774	2.288	662704.508	19.505	.000
	Huynh-Feldt	1516455.774	2.735	554388.976	19.505	.000
	Lower-bound	1516455.774	1.000	1516455.774	19.505	.000
LENGTH * VESSEL	Sphericity Assumed	18517.940	27	685.850	.238	1.000
* TRAWL	Greenhouse-Geisser	18517.940	2.288	8092.503	.238	.817
	Huynh-Feldt	18517.940	2.735	6769.826	.238	.852
	Lower-bound	18517.940	1.000	18517.940	.238	.629
Error(LENGTH)	Sphericity Assumed	2332398.581	810	2879.504		
	Greenhouse-Geisser	2332398.581	68.649	33975.956		
	Huynh-Feldt	2332398.581	82.061	28422.767		
	Lower-bound	2332398.581	30.000	77746.619		
- Marallell		No 4900 April Anno Salar				
-						
	Bit Bit					

Measure: MEASURE_1

Transformed Variable: Average

Source	Т	ype III Sum	df	Mean Square	F	Sia	
		07336 834	1	07336.834	1/1 261	000	
intercept		37330.004		37330.034	141.201	.000	
VESSEL		2097.630	1	2097.630	3.044	.091	
TRAWL		23253.953	1	23253.953	33.747	.000	
VESSEL *	TRAWL	24.047	1	24.047	.035	.853	
Error		20671.754	30	689.058			
<pre>Error 20671.754 30 689.058 compute s10=sum(110 to 114). compute s15=sum(115 to 119). compute s20=sum(120 to 124). compute s20=sum(125 to 129). compute s30=sum(130 to 134). compute s35=sum(135 to 139). recode haul (1 thru 8=1) (9 thru highest=2) into period. GLM s10 to s35 BY trawl period /WSFACTOR = length 6 helmert /METHOD = SSTYPE(3) /CRITERIA = ALPHA(.05) /WSDESIGN = length /EMMEANS=TABLES(trawl*period) /DESICN = period trawl</pre>							

General Linear Model

Within-Subjects Factors

Measure: MEASURE_1 Dependent LENGTH Variable S10 1 2 S15 3 S20 4 S25 5 S30 6 S35

Between-Subjects Factors

		N
TRAWL	е	17
	n	17
PERIOD	1.00	16
	2.00	18

Multivariate Tests b

Effect		Value	F	Hypothesis df	Error df	Sig.
LENGTH	Pillai's Trace	.853	30.250 ^a	5.000	26.000	.000
	Wilks' Lambda	.147	30.250 ^a	5.000	26.000	.000
	Hotelling's Trace	5.817	30.250 ^a	5.000	26.000	.000
	Roy's Largest Root	5.817	30.250 ^a	5.000	26.000	.000
LENGTH * PERIOD	Pillai's Trace	.250	1.736 ^a	5.000	26.000	.162
	Wilks' Lambda	.750	1.736 ^a	5.000	26.000	.162
	Hotelling's Trace	.334	1.736 ^a	5.000	26.000	.162
	Roy's Largest Root	.334	1.736 ^a	5.000	26.000	.162
LENGTH * TRAWL	Pillai's Trace	.598	7.740 ^a	5.000	26.000	.000
	Wilks' Lambda	.402	7.740 ^a	5.000	26.000	.000
	Hotelling's Trace	1.489	7.740 ^a	5.000	26.000	.000
	Roy's Largest Root	1.489	7.740 ^a	5.000	26.000	.000
LENGTH * TRAWL * PERIOD	Pillai's Trace	.278	1.999 ^a	5.000	26.000	.112
	Wilks' Lambda	.722	1.999 ^a	5.000	26.000	.112
	Hotelling's Trace	.384	1.999 ^a	5.000	26.000	.112
	Roy's Largest Root	.384	1.999 ^a	5.000	26.000	.112

a. Exact statistic

b.

. Design: Intercept+PERIOD+TRAWL+TRAWL * PERIOD Within Subjects Design: LENGTH

Mauchly's Test of Sphericity b

Measure: MEASURE_1

					Epsilon ^a		
Within Subjects Effect	Mauchly's W	Approx. Chi-Square	df	Sig.	Greenhouse -Geisser	Huynh-Feldt	Lower-bound
LENGTH	.000	552.569	14	.000	.369	.431	.200

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table. b.

. Design: Intercept+PERIOD+TRAWL+TRAWL * PERIOD Within Subjects Design: LENGTH

Tests of Within-Subjects Effects

		Type III Sum				
Source		of Squares	df	Mean Square	F	Sig.
LENGTH	Sphericity Assumed	22214499.15	5	4442899.829	85.778	.000
	Greenhouse-Geisser	22214499.15	1.844	12045114.53	85.778	.000
	Huynh-Feldt	22214499.15	2.156	10303300.56	85.778	.000
	Lower-bound	22214499.15	1.000	22214499.15	85.778	.000
LENGTH * PERIOD	Sphericity Assumed	62198.617	5	12439.723	.240	.944
	Greenhouse-Geisser	62198.617	1.844	33725.247	.240	.770
	Huynh-Feldt	62198.617	2.156	28848.323	.240	.803
	Lower-bound	62198.617	1.000	62198.617	.240	.628
LENGTH * TRAWL	Sphericity Assumed	5550776.560	5	1110155.312	21.434	.000
	Greenhouse-Geisser	5550776.560	1.844	3009734.270	21.434	.000
	Huynh-Feldt	5550776.560	2.156	2574504.105	21.434	.000
	Lower-bound	5550776.560	1.000	5550776.560	21.434	.000
LENGTH * TRAWL * PERIOD	Sphericity Assumed	800899.688	5	160179.938	3.093	.011
	Greenhouse-Geisser	800899.688	1.844	434262.704	3.093	.057
	Huynh-Feldt	800899.688	2.156	371465.057	3.093	.048
	Lower-bound	800899.688	1.000	800899.688	3.093	.089
Error(LENGTH)	Sphericity Assumed	7769260.004	150	51795.067		
	Greenhouse-Geisser	7769260.004	55.328	140421.242		
	Huynh-Feldt	7769260.004	64.682	120115.276		
	Lower-bound	7769260.004	30.000	258975.333		

Measure: MEASURE_1						
		Type III Sum				
Source	LENGTH	of Squares	df	Mean Square	F	Sig.
LENGTH	Level 1 vs. Later	3044352.688	1	3044352.688	140.301	.000
	Level 2 vs. Later	4663099.014	1	4663099.014	139.432	.000
	Level 3 vs. Later	9021258.353	1	9021258.353	58.801	.000
	Level 4 vs. Later	13676895.41	1	13676895.41	93.024	.000
	Level 5 vs. Level 6	126370.642	1	126370.642	59.864	.000
LENGTH * PERIOD	Level 1 vs. Later	887.411	1	887.411	.041	.841
	Level 2 vs. Later	2020.951	1	2020.951	.060	.807
	Level 3 vs. Later	70219.902	1	70219.902	.458	.504
	Level 4 vs. Later	10766.090	1	10766.090	.073	.789
	Level 5 vs. Level 6	.054	1	.054	.000	.996
LENGTH * TRAWL	Level 1 vs. Later	725272.785	1	725272.785	33.425	.000
	Level 2 vs. Later	1106370.827	1	1106370.827	33.082	.000
	Level 3 vs. Later	2980650.877	1	2980650.877	19.428	.000
	Level 4 vs. Later	2722483.900	1	2722483.900	18.517	.000
	Level 5 vs. Level 6	21616.973	1	21616.973	10.240	.003
LENGTH * TRAWL * PERIOD	Level 1 vs. Later	66981.449	1	66981.449	3.087	.089
	Level 2 vs. Later	106258.353	1	106258.353	3.177	.085
	Level 3 vs. Later	801007.354	1	801007.354	5.221	.030
	Level 4 vs. Later	88960.959	1	88960.959	.605	.443
	Level 5 vs. Level 6	24.620	1	24.620	.012	.915
Error(LENGTH)	Level 1 vs. Later	650961.243	30	21698.708		
	Level 2 vs. Later	1003304.496	30	33443.483		
	Level 3 vs. Later	4602622.610	30	153420.754		
	Level 4 vs. Later	4410775.760	30	147025.859		
	Level 5 vs. Level 6	63329.149	30	2110.972		

Tests of Within-Subjects Contrasts

Tests of Between-Subjects Effects

Measure: MEASURE_1							
Transformed Variable: Average							
Source	Type III Sum of Squares	df	Mean Square	F	Sig.		
Intercept	2119779.949	1	2119779.949	141.261	.000		
PERIOD	523.689	1	523.689	.035	.853		
TRAWL	506419.427	1	506419.427	33.747	.000		
TRAWL * PERIOD	45681.725	1	45681.725	3.044	.091		
Error	450184.863	30	15006.162				

Estimated Marginal Means

=

TRAWL * PERIOD

Measure: MEASURE_1

				95% Confidence Interval		
TRAWL	PERIOD	Mean	Std. Error	Lower Bound	Upper Bound	
е	1.00	95.083	43.310	6.632	183.534	
	2.00	160.657	40.833	77.265	244.050	
n	1.00	413.031	43.310	324.580	501.482	
	2.00	331.731	40.833	248.339	415.124	

GLM

```
s10 to s35 BY trawl period with haul
/WSFACTOR = length 6 helmert
/METHOD = SSTYPE(3)
/CRITERIA = ALPHA(.05)
/WSDESIGN = length
/EMMEANS=TABLES(trawl*period)
/DESIGN = period haul trawl period*trawl .
```

General Linear Model

Within-Subjects Factors

Measure: MEASURE_1

LENGTH	Dependent Variable
1	S10
2	S15
3	S20
4	S25
5	S30
6	S35

Between-Subjects Factors

		N
TRAWL	е	17
	n	17
PERIOD	1.00	16
	2.00	18

Multivariate Tests b

Effect		Value	F	Hypothesis df	Error df	Sig.
LENGTH	Pillai's Trace	.270	1.845 ^a	5.000	25.000	.140
	Wilks' Lambda	.730	1.845 ^a	5.000	25.000	.140
	Hotelling's Trace	.369	1.845 ^a	5.000	25.000	.140
	Roy's Largest Root	.369	1.845 ^a	5.000	25.000	.140
LENGTH * PERIOD	Pillai's Trace	.204	1.278 ^a	5.000	25.000	.304
	Wilks' Lambda	.796	1.278 ^a	5.000	25.000	.304
	Hotelling's Trace	.256	1.278 ^a	5.000	25.000	.304
	Roy's Largest Root	.256	1.278 ^a	5.000	25.000	.304
LENGTH * HAUL	Pillai's Trace	.221	1.420 ^a	5.000	25.000	.251
	Wilks' Lambda	.779	1.420 ^a	5.000	25.000	.251
	Hotelling's Trace	.284	1.420 ^a	5.000	25.000	.251
	Roy's Largest Root	.284	1.420 ^a	5.000	25.000	.251
LENGTH * TRAWL	Pillai's Trace	.613	7.904 ^a	5.000	25.000	.000
	Wilks' Lambda	.387	7.904 ^a	5.000	25.000	.000
	Hotelling's Trace	1.581	7.904 ^a	5.000	25.000	.000
	Roy's Largest Root	1.581	7.904 ^a	5.000	25.000	.000
LENGTH * TRAWL * PERIOD	Pillai's Trace	.287	2.009 ^a	5.000	25.000	.112
	Wilks' Lambda	.713	2.009 ^a	5.000	25.000	.112
	Hotelling's Trace	.402	2.009 ^a	5.000	25.000	.112
	Roy's Largest Root	.402	2.009 ^a	5.000	25.000	.112

a. Exact statistic

b.

. Design: Intercept+PERIOD+HAUL+TRAWL+TRAWL * PERIOD Within Subjects Design: LENGTH

Mauchly's Test of Sphericity b

Measure: MEASURE_1

						Epsilon ^a	
Within Subjects Effect	Mauchly's W	Approx. Chi-Square	df	Sig.	Greenhouse -Geisser	Huynh-Feldt	Lower-bound
LENGTH	.000	525.842	14	.000	.382	.465	.200

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table. b.

. Design: Intercept+PERIOD+HAUL+TRAWL+TRAWL * PERIOD Within Subjects Design: LENGTH
Tests of Within-Subjects Effects

Measure: MEASURE_1

Source		Type III Sum	df	Mean Square	F	Sig
LENGTH	Sphericity Assumed	240320.155	5	48064.031	.993	.424
	Greenhouse-Geisser	240320.155	1.911	125737.773	.993	.374
	Huynh-Feldt	240320.155	2.325	103359.791	.993	.386
	Lower-bound	240320.155	1.000	240320.155	.993	.327
LENGTH * PERIOD	Sphericity Assumed	687131.819	5	137426.364	2.841	.018
	Greenhouse-Geisser	687131.819	1.911	359513.851	2.841	.069
	Huynh-Feldt	687131.819	2.325	295529.941	2.841	.058
	Lower-bound	687131.819	1.000	687131.819	2.841	.103
LENGTH * HAUL	Sphericity Assumed	754237.449	5	150847.490	3.118	.011
	Greenhouse-Geisser	754237.449	1.911	394624.151	3.118	.054
	Huynh-Feldt	754237.449	2.325	324391.540	3.118	.043
	Lower-bound	754237.449	1.000	754237.449	3.118	.088
LENGTH * TRAWL	Sphericity Assumed	5550776.560	5	1110155.312	22.947	.000
	Greenhouse-Geisser	5550776.560	1.911	2904218.675	22.947	.000
	Huynh-Feldt	5550776.560	2.325	2387344.936	22.947	.000
	Lower-bound	5550776.560	1.000	5550776.560	22.947	.000
LENGTH * TRAWL * PERIOD	Sphericity Assumed	800899.688	5	160179.938	3.311	.007
	Greenhouse-Geisser	800899.688	1.911	419038.274	3.311	.046
	Huynh-Feldt	800899.688	2.325	344460.598	3.311	.036
	Lower-bound	800899.688	1.000	800899.688	3.311	.079
Error(LENGTH)	Sphericity Assumed	7015022.555	145	48379.466		
	Greenhouse-Geisser	7015022.555	55.427	126562.965		
	Huynh-Feldt	7015022.555	67.427	104038.121		
	Lower-bound	7015022.555	29.000	241897.329		

Measure: MEASURE_1						
		Type III Sum				
Source	LENGTH	of Squares	df	Mean Square	F	Sig.
LENGTH	Level 1 vs. Later	40749.499	1	40749.499	2.063	.162
	Level 2 vs. Later	60028.194	1	60028.194	1.978	.170
	Level 3 vs. Later	15701.416	1	15701.416	.111	.741
	Level 4 vs. Later	210011.498	1	210011.498	1.487	.233
	Level 5 vs. Level 6	13111.912	1	13111.912	6.040	.020
LENGTH * PERIOD	Level 1 vs. Later	66084.765	1	66084.765	3.346	.078
	Level 2 vs. Later	106629.270	1	106629.270	3.514	.071
	Level 3 vs. Later	561334.898	1	561334.898	3.975	.056
	Level 4 vs. Later	188423.827	1	188423.827	1.334	.258
	Level 5 vs. Level 6	281.413	1	281.413	.130	.721
LENGTH * HAUL	Level 1 vs. Later	78198.213	1	78198.213	3.959	.056
	Level 2 vs. Later	123273.125	1	123273.125	4.062	.053
	Level 3 vs. Later	507137.362	1	507137.362	3.591	.068
	Level 4 vs. Later	314873.598	1	314873.598	2.229	.146
	Level 5 vs. Level 6	370.037	1	370.037	.170	.683
LENGTH * TRAWL	Level 1 vs. Later	725272.785	1	725272.785	36.722	.000
	Level 2 vs. Later	1106370.827	1	1106370.827	36.459	.000
	Level 3 vs. Later	2980650.877	1	2980650.877	21.106	.000
	Level 4 vs. Later	2722483.900	1	2722483.900	19.276	.000
	Level 5 vs. Level 6	21616.973	1	21616.973	9.957	.004
LENGTH * TRAWL * PERIOD	Level 1 vs. Later	66981.449	1	66981.449	3.391	.076
	Level 2 vs. Later	106258.353	1	106258.353	3.502	.071
	Level 3 vs. Later	801007.354	1	801007.354	5.672	.024
	Level 4 vs. Later	88960.959	1	88960.959	.630	.434
	Level 5 vs. Level 6	24.620	1	24.620	.011	.916
Error(LENGTH)	Level 1 vs. Later	572763.030	29	19750.449		
	Level 2 vs. Later	880031.370	29	30345.909		
	Level 3 vs. Later	4095485.248	29	141223.629		
	Level 4 vs. Later	4095902.162	29	141238.006		
	Level 5 vs. Level 6	62959.112	29	2171.004		

Tests of Within-Subjects Contrasts

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Intercept	28338.455	1	28338.455	2.077	.160
PERIOD	45632.780	1	45632.780	3.344	.078
HAUL	54500.278	1	54500.278	3.994	.055
TRAWL	506419.427	1	506419.427	37.116	.000
TRAWL * PERIOD	45681.725	1	45681.725	3.348	.078
Error	395684.586	29	13644.296		

Estimated Marginal Means

TRAWL * PERIOD

Measure: MEASURE_1							
				95% Confidence Interval			
TRAWL	PERIOD	Mean	Std. Error	Lower Bound	Upper Bound		
е	1.00	168.636 ^a	55.317	55.500	281.771		
	2.00	95.278 ^a	50.854	-8.731	199.287		
n	1.00	486.584 ^a	55.317	373.448	599.719		
	2.00	266.352 ^a	50.854	162.343	370.361		

a. Covariates appearing in the model are evaluated at the following values: HAUL = 9.0000.